Abstract:The indigenous urease-producing bacterium selected from nursery soil were employed in the test of MICP treatment of MSWI fly ash. The solidification / stabilization effect of the treated fly ash was evaluated by particle size distribution, unconfined compressive strength (UCS) and heavy metal leaching toxicity. The results showed that under the combined action of MICP of Ensifer adhaerens and pozzolanic properties of fly ash, the solidification and stabilization of fly ash were obvious; under the optimal working condition, the UCS could reach 205.2kPa and the elastic modulus could reach 200MPa, and the leaching concentrations of Cd, Cr, Pb, Zn and Cu all met the class III requirements of the environmental quality standards for surface water. On this basis, the performance of asphalt pavement with the subgrade filler partly replaced by solidified fly ash was analyzed by using finite element software ABAQUS. The results showed that the reconstructive subgrade could effectively reduce the tensile strain at bottom, prolong the fatigue life and effectively reduce the rutting damage of the asphalt pavement. Therefore, the part replacement of subgrade filler is one of the promising ways for the utilization of fly ash.
Ferreira C, Ribeiro A, Ottosen L. Possible applications for municipal solid waste fly ash [J]. Journal of hazardous materials, 2003,96(2/3): 201-216.
[2]
缪建冬,郑 浩,陈 萍,等.杭州地区生活垃圾焚烧飞灰基本特性分析 [J]. 浙江理工大学学报(自然科学版), 2018,39(5):642-650. Miao J D, Zheng H, Chen P, et al. Basic characteristics of municipal solid waste incineration fly ash in Hangzhou, China [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2018,39(5): 642-650.
[3]
中华人民共和国国家统计局.中国统计年鉴 [M]. 北京:中国统计出版社, 2020. National Bureau of statistics of the people's Republic of China. China statistical yearbook [M]. Beijing: China Statistics Press, 2020.
[4]
童立志,韦黎华,王 峰,等.焚烧飞灰重金属含量及浸出长期变化规律研究 [J]. 中国环境科学, 2020,40(5):2132-2139. Tong L Z, Wei L H, Wang F, et al. Study on the long-term changes of heavy metal content and leaching behavior of municipal solid waste incineration fly ash [J]. China Environmental Science, 2020,40(5): 2132-2139.
[5]
牟陈亚,何 亮,李清毅,等.固化飞灰形状及填埋方式对重金属浸出的影响 [J]. 中国环境科学, 2020,40(4):1601-1608. Mou C Y, He L, Li Q Y, et al. Effects of solidified fly ash shape and landfill method on leaching of heavy metals [J]. China Environmental Science, 2020,40(4):1601-1608.
[6]
武志明.我国典型区域生活垃圾焚烧飞灰污染特征及环境安全评价研究 [D]. 上海:上海大学, 2013. Wu Z M. Study of pollution characteristics and environmental safety evaluation for heavy metals in Chinese typical regional municipal solid waste incineration Fly Ash [D]. Shanghai: Shanghai University, 2013.
[7]
章 骅,曾佳玮,吕 凡,等.飞灰螯合剂中挥发性污染物的释放 [J]. 中国环境科学, 2019,39(12):5182-5190. Zhang H, Zeng J W, LÜ F, et al. Release of volatile pollutants from four chelating agents used for stabilization of fly ash [J]. China Environmental Science, 2019,39(12):5182-5190.
[8]
Wang X, Li A, Zhang Z. The effects of water washing on cement- based stabilization of MWSI fly ash [J]. Procedia Environmental Sciences, 2016,31:440-446.
[9]
靳美娟.城市生活垃圾焚烧飞灰水泥固化技术研究 [J]. 环境工程学报, 2016,10(6):3235-3241. Jin M. Study on technology of solidification of municipal solid wastes incineration (MSWI) fly ash by cement [J]. Environmental Engineering, 2016,10(6):3235-3241.
[10]
温彩霞.DTCL螯合剂制备及其在飞灰处理中的应用研究 [J]. 农业与技术, 2012,32(9):197-200. Wen C X. Study on Preparation of DTCL chelating agent and its application to the treatment of fly ash [J]. Agriculture and Technology, 2012,32(9):197-200.
[11]
Hammes F, Seka A, De K S, et al. A novel approach to calcium removal from calcium-rich industrial waste water [J]. Water Research, 2003,37:699-704.
[12]
王茂林,吴世军,杨永强,等.微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展 [J]. 环境科学研究, 2018,31(2):206-214. Wang M L, Wu S J, Yang Y Q, et al. Microbial induced carbonate precipitation and its application for immobilization of heavy metals: A review [J]. Research of Environmental Sciences, 2018,31(2):206- 214.
[13]
朱广森,汪文军,吴 峥,等.微生物诱导碳酸盐沉积介导的Cd2+固定 [J]. 中国环境科学, 2021,41(12):5912-5920. Zhu G S, Wang W J, Wu Z, et al. Immobilization of Cd2+ by microbial induced carbonate precipitation [J]. China Environmental Science, 2021,41(12):5912-5920.
[14]
Achal V, Pan X, Zhang D, et al. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation [J]. Journal of Microbiology and Biotechnology, 2012,22(2):244-247.
[15]
Li M, Cheng X, Guo H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil [J]. International Biodeterioration & Biodegradation, 2013,76:81-85.
[16]
Achal V, Pan X, Zhang D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation [J]. Ecological Engineering, 2011,37(10):1601-1605.
[17]
Kang C H, Shin Y J, Periasamy A, et al. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation [J]. The Journal of General and Applied Microbiology, 2016,62(4):206-212.
[18]
Jiang N J, Liu R, Du Y J, et al. Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency [J]. Science of The Total Environment, 2019,672(JUL.1):722-731.
[19]
蔡 红,王晓宇,韩 辉.产脲酶细菌矿化修复Cd和Pb污染土壤效应和机制 [J]. 中国环境科学, 2020,40(11):4883-4892. Cai H, Wang X Y, Han H. Effects and mechanisms of urease-producing bacteria mineralization on remediation of Cd- and Pb-contaminated soil [J]. China Environmental Science, 2020,40(11): 4883-4892.
[20]
许燕波,钱春香,陆兆文.微生物矿化修复重金属污染土壤 [J]. 环境工程学报, 2013,7(7):2763-2768. Xu Y B, Qian C X, Lu Z W. Remediation of heavy metal contaminated soils by bacteria biomineralization [J]. Environmental Engineering, 2013,7(7):2763-2768.
[21]
Achal V, Pan X, Lee D J, et al. Remediation of Cr(VI) from chromium slag by biocementation [J]. Chemosphere, 2013,93(7):1352-1358.
[22]
Kumari D, Pan X, Lee D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature [J]. International Biodeterioration & Biodegradation, 2014,94:98-102.
[23]
赵 越,姚 俊,王天齐,等.碳酸盐矿化菌的筛选与其吸附和矿化Cd2+的特性 [J]. 中国环境科学, 2016,36(12):3800-3806. Zhao Y, Yao J, Wang T Q, et al. Screening of carbonate- biomineralization microbe and its cadmium removal characteristics based on adsorption and biomineralization [J]. China Environmental Science, 2016,36(12):3800-3806.
[24]
Achal V, Pan X, Fu Q, et al. Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli [J]. Journal of hazardous materials, 2012,201:178-184.
[25]
Kang C H, Choi J H, Noh J, et al. Microbially induced calcite precipitation-based sequestration of strontium by Sporosarcina pasteurii WJ-2 [J]. Appl. Biochem. Biotechnol., 2014,174(7):2482- 2491.
[26]
Chen P, Zheng H, Xu H, et al. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity [J]. PLOS ONE, 2019,14(10): e0223900.
[27]
Xu H, Zheng H, Wang J N, et al. Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash [J]. Methods X, 2019,6:1036-1043.
[28]
GB 16889-2008 生活垃圾填埋场污染控制标准 [S]. GB 16889-2008 Standard for pollution control on the landfill site of municipal solid waste [S].
[29]
Houdt R V, Michiels C W. Biofilm formation and the food industry, a focus on the bacterial outer surface [J]. Journal of Applied Microbiology, 2010,109(4):1117-1131.
[30]
Tang Q, Zhang Y, Gao Y F, et al. Use of cement-chelated solidified MSWI fly ash for pavement material: Mechanical and environmental evaluations [J]. Canadian Geotechnical Journal, 2017,54(11):1553- 1566.
[31]
HJ/T 166-2004 土壤环境监测技术规范 [S]. HJ/T 166-2004 The technical specification for soil environmental monitoring [S].
尹黎阳,唐朝生,谢约翰,等.微生物矿化作用改善岩土材料性能的影响因素 [J]. 岩土力学, 2019,40(7):2525-2546. Yin L Y, Tang C S, Xie Y H, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019,40(7):2525-2546.
[34]
GB/T 50123-2019 土工试验方法标准 [S]. GB/T 50123-2019 Standard for geotechnical testing method [S].
[35]
Romanoschi S A, Momin S, Bethu S, et al. Development of traffic inputs for new mechanistic–empirical pavement design guide: Case study [J]. Transportation Research Record, 2011,2256(1):142-150.
[36]
周志刚,袁秀湘.加筋沥青路面APA试验及其非线性疲劳损伤分析 [J]. 工程力学, 2012,29(9):166-176. Zhou Z G; Yuan X X. APA test and nonlinear fatigue damage analysis of the reinforced asphalt pavement [J]. Engineering Mechanics, 2012,29(9):166-176.
[37]
JTG D50-2017 公路沥青路面设计规范 [S]. JTG D50-2017 Specifications for design of highway asphalt pavement [S].
[38]
杨志军,倪余文,张 青,等.垃圾焚烧飞灰或炉渣中二口恶的分布特征 [J]. 中国环境科学, 2004,24(5):13-16. Yang Z J, Ni Y W, Zhang Q, et al. Distribution characters of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash or slag from municipal waste incineration [J]. China Environmental Science, 2004,24(5):13-16.
[39]
武博然,王冬扬,柴晓利.生活垃圾焚烧飞灰生物脱氯机制研究 [J]. 中国环境科学, 2015,35(8):2470-2476. Wu B R, Wang D Y, Chai X L. Dechlorination mechanism of municipal solid wastes incineration fly ash by biological process [J]. China Environmental Science, 2015,35(8):2470-2476.
[40]
Zhang Y, Soleimanbeigi A, Likos W J, et al. Geotechnical and Leaching Properties of Municipal Solid Waste Incineration Fly Ash for Use as Embankment Fill Material [J]. Transportation Research Record, 2016,2579(1):70-78.
[41]
Qiu Y F, Chen P, Zhou K W, et al. Use of new bacterial strain in solidification and stabilization of MSWI fly ash [J]. Environmental Geotechnics, 2021:1-11.
[42]
Amarakoon G, Satoru K. Factors affecting sand solidification using MICP with Pararhodobacter sp. [J]. Materials Transactions, 2017, 59(1):72-81.
[43]
Okwadha G, Li J. Optimum conditions for microbial carbonate precipitation [J]. Chemosphere, 2010,81(9):1143-1148.
[44]
成 亮,钱春香,王瑞兴,等.碳酸岩矿化菌诱导碳酸钙晶体形成机理研究 [J]. 化学学报, 2007,65(19):2133-2138. Cheng L, Qian C X, Wang R X, et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe [J]. Acta Chimica Sinica, 2007,65(19):2133-2138.
[45]
GB 3838-2002 地表水环境质量标准 [S]. GB 3838-2002 Environmental quality standards for surface water [S].
[46]
Gu F, Sahin H, Luo X, et al. Estimation of resilient modulus of unbound aggregates using performance-related base course properties [J]. Journal of Materials in Civil Engineering, 2015,27(6):1-10.
[47]
Gu F, Zhang Y, Droddy C V, et al. Development of a new mechanistic empirical rutting model for unbound granular material [J]. Journal of Materials in Civil Engineering, 2016,28(8):1-10.