Estimation of vegetation underlying surface Z0 and assessment on the impacts of its improvement
TIAN Chun-yan1,2, CUI Yin-ping1, SHEN Chong3, CHEN Xiu-zhi1, SHEN Ao1, FAN Qi1
1. Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Southern Laboratory of Ocean Science and Engineering (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; 2. Meteorological Center of Middle South Regional Air Traffic Management Bureau of CAAC, Guangzhou 510000, China; 3. Guangzhou Climate and Agrometeorology Center, Guangzhou 511430, China
Abstract:The morphology-remote sensing inversion with satellite remote sensing and multi-observation data were utilized to estimate the aerodynamic roughness length (Z0) of main vegetation underlying surfaces in China. This new Z0 dataset was then used to replace the default values in the WRF-Chem model. Combined with the national meteorological and pollutant observation data, the impacts of Z0 improvement on the meteorological field and chemical field simulations were evaluated. The results show that the high value of Z0 is mainly located over the forest underlying surface (higher than 1m); the Z0 values over the farmland and grassland underlying surfaces are generally lower (lower than 0.5m). The Z0 values over other underlying surfaces fell in between 0.5m and 1m; and the modification of Z0 has a better improvement in the simulations of 10m wind speed (WS10) and surface temperature (TSK) even though its effects on 2m temperature (T2) and relative humidity (RH) are not obvious. We also observed that an increase in Z0 mainly has a warming effect on TSK and a weakening effect on WS10 for different types of underlying surfaces. In terms of the improvement ratio (the difference between the simulated value after the improvement of each element and the simulated value before the improvement divided by the simulated value before the improvement, the same below), the improved Z0 demonstrates a greater impact on WS10 than on TSK. For the pollutant concentrations, the modification of Z0 has larger effects on the simulations for PM2.5 and PM10 than for other pollutants (SO2, NO2, O3). Furthermore, the impact of the improved Z0 was larger on meteorological elements than on pollutant concentrations. In general, the improvement of Z0 has the largest impact on the 10m wind speed; because the improved Z0 is generally higher than the model-default Z0 value. As Z0 is a variable for characterizing the surface roughness, the obstruction to the air flow increases with an increase in surface roughness and thus results in a reduction in the near surface wind speed.
田春艳, 崔寅平, 申冲, 陈修治, 沈傲, 樊琦. 植被下垫面Z0的估算及其改进影响评估[J]. 中国环境科学, 2022, 42(9): 3969-3982.
TIAN Chun-yan, CUI Yin-ping, SHEN Chong, CHEN Xiu-zhi, SHEN Ao, FAN Qi. Estimation of vegetation underlying surface Z0 and assessment on the impacts of its improvement. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 3969-3982.
曾 剑.中国北方地区陆面过程特征和参数化及其与气候关系 [D]. 北京:中国气象科学研究院, 2011. Zeng J. The characteristics and parameterization of land surface processes and its relationship with climate over northern China [D]. Beijing: Chinese Academy of Meteorological Sciences, 2011.
[2]
刘小平,董治宝.空气动力学粗糙度的物理与实践意义 [J]. 中国沙漠, 2003,23(4):3-12. Liu X P, Dong Z B. Review of aerodynamic roughness length [J]. Journal of Desert Research, 2003,23(4):3-12.
[3]
张雅静.阴山北麓地表空气动力学粗糙度性质的试验研究 [D]. 呼和浩特:内蒙古农业大学, 2007. Zhang Y J. Experiment Study on topsoil aerodynamics roughness characteristics in the north of mount Yin [D]. Huhhot: Inner Mongolia Agricultural University, 2007.
[4]
杨耀先,李茂善,胡泽勇,等.藏北高原高寒草甸地表粗糙度对地气通量的影响 [J]. 高原气象, 2014,33(3):626-636. Yang Y X, L i M S, Hu Z Y, et al. Influence of surface roughness on Surface-Air Fluxes in alpine meadow over the northern Qinghai-Xizang Plateau [J]. Plateau Meteorology, 2014,33(3):626- 636.
[5]
张 强,姚 彤,岳 平.一个平坦低矮植被陆面动力学粗糙度多因子参数化方案及其检验 [J]. 中国科学:地球科学, 2015,45(11): 1713-1727. Zhang Q, Yao T, Yue P.Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation [J]. Science China: Earth Sciences, 2015,45(11):1713-1727.
[6]
王凯嘉.夏季风影响过渡区动力学粗糙度变化特征和影响机制研究 [D]. 兰州:兰大学, 2018. Wang K J. The change features and influence mechanism research on dynamic roughness of summer monsoon transition zone [D]. Lanzhou: Lanzhou University, 2018.
[7]
胡文超,张文煜,张 宇,等.河西走廊下垫面粗糙度实测值与模拟值的差异性分析 [J]. 高原气象, 2010,29(1):51-55. Hu W C, Zhang W Y, Zhang Y, et al. Variance analysis on the simulated and observed values of underlaying surface roughness in Gansu Corridor [J]. Plateau Meteorology, 2010,29(1):51-55.
[8]
刘 野,郭维栋,宋耀明.半干旱区关键地表参数的估算及其对地气通量模拟的改进 [J]. 中国科学:地球科学, 2015,45(10):1524-1536. Liu Y, Guo W D, Song Y M. Estimation of key surface parameters in semi-arid region and their impacts on improvement of surface fluxes Simulation [J]. Science China: Earth Sciences, 2015,45(10):1524- 1536.
[9]
鲍 艳,吕世华.戈壁陆面参数改进对地表热状况影响的数值模拟 [J]. 地球科学进展, 2007,22(特刊):185-193. Bao Y, Lü S H. Simulations of Impacts of Land Surface Parameters Improvements on Surface Thermal Condition over Gobi [J]. Advances in Earth Science, 2007,22(Suppl):185-193.
[10]
吴晓波.基于WRF和CFD耦合的复杂地形风场数值研究 [D]. 武汉:华中科技大学, 2018. Wu X B. Numerical Simulation of Wind Field on Complex Terrain Based on Coupling WRF And CFD [D]. Wuhan: Huazhong University of Science & Technology, 2018.
[11]
Jee J B, Min J, Yi C, et al. Sensitivity analysis of the high-resolution WISE-WRF model with the use of surface roughness length in Seoul metropolitan areas [J]. Atmosphere, 2016, 26(1):111-126.
[12]
孙行知,钟中,孙源.基于有效空气动力学参数新方案对2003年东亚夏季降水模拟的改进 [C]. 中国气象学会.创新驱动发展 提高气象灾害防御能力——S18第四届研究生年会.中国气象学会:中国气象学会, 2013:408-412. Sun X Z, Zhong Z, Sun Y. Parameters Improvement in new effective aerodynamic scheme and its impact on East Asian Summer precipitation simulation in 2003 [C]. Chinese Meteorological Society. Innovation-driven development Improving the Ability of Meteorological Disaster Defense- S18 The Fourth Annual Conference of Graduate Students. Chinese Meteorological Society: Chinese Meteorological Society, 2013:408-412.
[13]
Varquez A C G, Nakayoshi M, Makabe T, et al. WRF application of high resolution urban surface parameters on some major cities of Japan [J]. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014,70(4):I_175-I_180.
[14]
Shen C, Shen A, Tian C Y, et al. Evaluating the impacts of updated aerodynamic roughness length in the WRF/Chem model over Pearl River Delta [J]. Meteorology and Atmospheric Physics, 2020,132: 427–440.
[15]
Myneni R B, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data [J]. Remote Sensing of Environment, 2002,83(1/2): 214-231.
[16]
Van Der Graaf S C, Kranenburg R, Segers A J, et al. Satellite-derived leaf area index and roughness length information for surface- atmosphere exchange modelling: a case study for reactive nitrogen deposition in north-western Europe using LOTOS-EUROS v2.0 [J]. Geoscientific Model Development, 2020,13(5):2451–2474.
[17]
方红亮.我国叶面积指数卫星遥感产品生产及验证 [J]. 遥感技术与应用, 2020,35(5):990-1003. Fang H L. Development and validation of satellite Leaf Area Index (LAI) products in China [J]. Remote Sensing Technology and Application, 2020,35(5):990-1003.
[18]
刘勇洪,房小怡,栾庆祖.基于卫星数据与GIS技术的北京地区粗糙度长度估算研究 [J]. 高原气象, 2016,35(6):1625-1638. Liu Y H, Fang X Y, Luan Q Z. Estimation of roughness length of Beijing area based on satellite data and GIS technique [J]. Plateau Meteorology, 2016,35(6):1625-1638.
[19]
Simard M, Pinto N, Fisher J B, et al. Mapping forest canopy height globally with spaceborne lidar [J]. Journal of Geophysical Research, 2011,116(G4).
[20]
Raupach M R. Drag and drag partition on rough surfaces [J]. Boundary-Layer Meteorol, 1992,60:375–395.
[21]
Raupach M R. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index [J]. Boundary-Layer Meteorol, 1994,71:211–216.
[22]
Jasinski M F, Borak J, Crago R. Bulk surface momentum parameters for satellite-derived vegetation fields [J]. Agricultural and Forest Meteorology, 2005,133(1-4):55-68.
[23]
Zeng X, Shaikh M, Dai Y, et al. Coupling of the common land model to the NCAR community climate model [J]. Journal of Climate, 2002,15:1832-1854.
[24]
Grell G A, Peckham S E, Schmitz R. Fully coupled "online" chemistry within the WRF model [J]. Atmospheric Environment, 2005,39(37): 6957–6975.
[25]
Seinfeld J H, Carmichael G R, Arimoto R, et al. Ace-Asia: regional climatic and atmospheric chemical effects of Asian dust and pollution [J]. Bulletin of the American Meteorological Society, 2004,85(3):367- 380.
[26]
Li M, Zhang Q, Kurokawa J I, et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP [J]. Atmospheric Chemistry and Physics, 2015,17(2):935–963.
[27]
于名召.空气动力学粗糙度的遥感方法及其在蒸散发计算中的应用研究 [D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2018. Yu M Z. Research on remote sensing methods for the aerodynamic roughness length and its application in evapotranspiration calculation [D]. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth, Chinese, Academy of Sciences), 2018.
[28]
王国印.半干旱区陆气相互作用的观测与研究 [D]. 兰州:兰州大学, 2013. Wang G Y. Observation of land-atmosphere interaction over semi-arid regions [D]. Lanzhou: Lanzhou University, 2013.
[29]
姚 彤.我国北方地区地表粗糙度和反照率参数化特征研究 [D]. 兰州:兰州大学, 2014. Yao T. A study on parametric feature of the surface roughness and albedo in north China [D]. Lanzhou: Lanzhou University, 2014.
[30]
赵晓松,关德新,吴家兵,等.长白山阔叶红松林的零平面位移和粗糙度 [J]. 生态学杂志, 2004,23(5):84-88. Zhao X S, Guan D X, Wu J B, et al. Zero-plane displacement and roughness length of the mixed forest of broad-leaved and Korean-pine in Changbai Mountain [J]. Chinese Journal of Ecology, 2004,23(5): 84-88.
[31]
钟 中,韩士杰.长白山阔叶红松林冠层空气动力学参数的计算 [J]. 南京大学学报(自然科学版), 2002,38(4):565-571. Zhong Z, Han S J. The calculation of aerodynamic parameters of Korea Pine canopy in Changbai Mountains [J]. Journal of Nanjing University(Natural Sciences), 2002,38(4):565-571.
[32]
邢丽玮.基于MODIS和GLAS数据反演多时序中国陆表植被空气动力学粗糙度 [D]. 北京:首都师范大学, 2012. Xing L W. Retrieving the multi-temporal aerodynamic roughness length of surface vegetation in China based on MODIS and GLAS data [D]. Beijing: Capital Normal University, 2012.
[33]
曾 剑,张 强.2008年夏季中国干旱-半干旱区陆面主要物理参数的平均特征 [J]. 高原气象, 2012,31(6):1539-1550. Zeng J, Zhang Q. Mean characteristics of land surface key parameters in semi-arid and regions of China in summers of 2008. Plateau meteorology, 2012,31(6):1539-1550.
[34]
鞠英芹.不同下垫面类型动力学粗糙度与热力学粗糙度的研究 [D]. 南京:南京信息工程大学, 2012. Ju Y Q. Study of aerodynamic roughness length and thermal roughness length on different underlying surfaces [D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
[35]
周艳莲,孙晓敏,朱治林,等.几种典型地表粗糙度计算方法的比较研究 [J]. 地理研究, 2007,26(5):887-896. Zhou Y L, Sun X M, Zhu Z L, et al. Comparative research on four typical surface roughness length calculation methods [J]. Geographical Research, 2007,26(5):887-896.
[36]
De Bruin H A R, Moore C J. Zero-plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypothesis [J]. Boundary-Layer Meteorol, 1985,31:39–49.
[37]
刘 伟,魏 信,石 文,等.复杂地形条件下零平面位移和空气动力学粗糙度的计算——以珠海南亚热带常绿阔叶林地区为例 [J]. 热带气象学报, 2016,32(4):524-532. Liu W, Wei X, Shi W, et al. The calculation of zero-plane displacement and aerodynamic roughness of heterogenous terrain-- With the Evergreen broad-leaf forest in Zhuhai as an example [J]. Journal of tropical meteorology, 2016,32(4):524-532.
[38]
Jasinski M F, Crago R D. Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery [J]. Agricultural and Forest Meteorology, 1999, 94(1):65-77.
[39]
Gallagher M W, Nemitz E, Dorsey J R, et al. Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition [J]. Journal of Geophysical Research, 2002,107(D12):4154.
[40]
Gao Z Q, Wang J M, Ma Y M, et al. Study of roughness lengths and drag coefficients over Nansha sea region, Gobi, desert, Oasis and Tibetan plateau, Physics and Chemistry of the Earth, Part B: Hydrology [J]. Oceans and Atmosphere, 2000,25(2):141-145.
[41]
Lu L, Liu S, Xu Z. et al. The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces [J]. Advances in Atmospheric Sciences, 2009,26:180-190.
[42]
Mailler S, Menut L, Khvorostyanov D, et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling [J]. Geoscientific Model Development, 2017,10:2397-2423.
[43]
Silva J, Ribeiro C, Guedes R, et al. Roughness length classification of Corine land cover classes [J]. Proceedings of European Wind Energy Conference, 2007.
[44]
Simpson D, Benedictow A, Berge H, et al. The EMEP MSC-W chemical transport model – technical description [J]. Atmospheric Chemistry and Physics, 2012,12(16):7825–7865.
[45]
Wiernga J. Representative roughness parameters for homogeneous terrain [J]. Boundary-Layer Meteorology, 1993,63:323-363.
[46]
冯健武,刘辉志,王 雷,等.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征 [J]. 中国科学:地球科学, 2012,42(1): 24-33. Feng J W, Liu H Z, Wang L, et al. Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area. Sci China Earth Sci, 2012,42(1):24-33.
[47]
高志球,王介民,马耀明,等.不同下垫面的粗糙度和中性曳力系数研究 [J]. 高原气象, 2000,19(1):17-24. Gao Z Q, Wang J M, Ma Y M, et al. Study on roughness lengths and drag coefficients over the different underlying surfaces [J]. Plateau meteorology, 2000,19(1):17-24.
[48]
李宏宇,张 强,史晋森,等.黄土高原自然植被下垫面陆面过程参数研究 [J]. 气象学报, 2012,70(5):1137-1148. Li H Y, Zhang Q, Shi J S, et al. A study of the parameterization of land-surface processes over the natural vegetation surface of Loess Plateau [J]. Acta Meteorologica Sinica, 2012,70(5):1137-1148.
[49]
李锁锁,吕世华,柳媛普,等.黄河上游玛曲地区空气动力学参数的确定及其在陆面过程模式中的应用 [J]. 高原气象, 2010,29(6):1408- 1413. Li S S, Lü S H, Liu Y P, et al. Determination of aerodynamical parameter in Maqu Area in the upper reach of Yellow River and Its application in land surface process model [J]. Plateau meteorology, 2010,29(6):1408-1413.
[50]
刘啸然,李茂善,胡文斌.藏北高原那曲地区不同下垫面地表粗糙度的变化特征研究 [J]. 高原气象, 2019,38(2):428-438. Liu X R, Li M S, Hu W B. Variations of surface roughness on different underlying surface at Nagqu Area over the Qinghai-Tibetan Plateau [J]. Plateau Meteorology, 2019,38(2):428-438.
[51]
马耀明,塚本修,王介民,等.青藏高原草甸下垫面上的动力学和热力学参数分析 [J]. 自然科学进展, 2001,11(8):42-46. Ma Y M, Zhong B X, Wang J M, et al. Analysis of dynamic and thermodynamic parameters on the underlying surface of a meadow on the Tibetan Plateau [J]. Progress in Natural Science, 2001,11(8):42-46.
[52]
孙 俊,胡泽勇,陈学龙,等.黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析 [J]. 高原气象, 2012,31(4):920-926. Sun J, Hu Z Y, Chen X L, et al. Comparative analysis on momentum bulk transfer coefficients and roughness length under the different underlying surfaces in uppers and middle reaches of Heihe river basin [J]. Plateau Meteorology, 2012,31(4):920-926.
[53]
张 强,曾 剑,姚 桐.植被下垫面近地层大气动力状态与动力学粗糙度长度的相互作用及其参数化关系 [J]. 科学通报, 2012,57(8): 647-655. Zhang Q, Zeng J, Yao T. Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface [J]. Chin Sci Bull, 2012,57(8):647-655.
[54]
张文煜,张 宇,陆晓静,等.黄土高原半干旱区非均一下垫面粗糙度分析 [J]. 高原气象, 2009,28(4):763-768. Zhang W Y, Zhang Y, Lu X J, et al. Analysis on heterogeneous underlying surface roughness length in semi-arid mountains area of Loess Plateau, China [J]. Plateau Meteorology, 2009,28(4):763-768.
[55]
Tsai J L, Tsuang B J. Aerodynamic roughness over an urban area and over two farmlands in a populated area as determined by wind profiles and surface energy flux measurements [J]. Agricultural and Forest Meteorology, 2005,132(1/2):154-170.
[56]
Tsai J L, Tsuang B J, Lu P S, et al. Measurements of aerodynamic roughness, Bowen ratio, and atmospheric surface layer height by eddy covariance and tethersonde systems simultaneously over a heterogeneous rice paddy [J]. Journal of Hydrometeorology, 2010, 11(2):452-466.
[57]
贾 立,王介民.绿洲-沙漠复合地表条件下的局地和有效粗糙度 [J]. 气象学报, 1999,57(3):91-102. Jia Li, Wang J M. The local and effective aerodynamic roughness length of a complex landscape of oasis and desert [J]. Acta meteorological sincia, 1999,57(3):91-102.
[58]
Lankreijer H J M, Hendriks M J, Klaassen W. A comparison of models simulating rainfall interception of forests [J]. Agricultural and Forest Meteorology, 1993,64(3/4):187-199.
[59]
Lo A K F. Determination of zero-plane displacement and roughness length of a forest canopy using profiles of limited height [J]. Boundary-Layer Meteorology, 1995,75:381-402.
[60]
Mikami M, Toya T, Yasuda N. An analytical method for the determination of the roughness parameters over complex regions [J]. Boundary-Layer Meteorology, 1996,79:23-33.
[61]
Parlange M B, Brutsaert W. Regional roughness of the Landes forest and surface shear stress under neutral conditions [J]. Boundary-Layer Meteorol, 1989,48:69–81.
[62]
Toda M, Sugita M. Single level turbulence measurements to determine roughness parameters of complex terrain [J]. Journal of Geophysical Research, 2003,108(D12):4363.
[63]
Weligepolage K, Gieske A S M, Van Der Tol C, et al. Effect of sub-layer corrections on the roughness parameterization of a Douglas fir forest [J]. Agricultural and Forest Meteorology, 2012,162-163: 115-126.
[64]
Yang R, Friedl M A. Determination of roughness lengths for heat and momentum over boreal forests [J]. Boundary-Layer Meteorology, 2003,107:581-603.
[65]
刘和平,刘树华,朱廷曜,等.森林冠层空气动力学参数的确定 [J]. 北京大学学报(自然科学版), 1997,33(4):116-122. Liu H P, Liu S H, Zhu T Y, et al. Determination of aerodynamic parameters of Changbai mountain forest [J]. Acta Scicntiarum Naturalium, 1997,33(4):116-122.
[66]
张学仕,蒋 琰,薛建辉,等.江苏句容下蜀次生栎林的空气动力学参数研究 [J]. 南京林业大学学报(自然科学版), 2010,34(6):61-65. Zhang X S, Jiang Y, Xue J H, et al. Aerodynamic parameters of secondary oak forest in Xiashu Jurong county of Jiangsu province [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020,34(6):61-65.
[67]
张一平,宋清海,于贵瑞,等.西双版纳热带季节雨林风时空变化特征初步分析 [J]. 应用生态学报, 2006,17(1):11-16. Zhang Y P, Song Q H, Yu G R, et al. Temporal-spatial characteristics of wind in tropical seasonal rainf orest in Xishuangbanna of Yunnan province [J]. Chinese Journal of Applied Ecology, 2006,17(1):11-16.
[68]
周艳莲,孙晓敏,朱治林,等.几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响 [J]. 中国科学.D辑:地球科学, 2006, 36(S1):244-254. Zhou Y L, Sun X M, Zhu Z L, et al.Dynamic variation of surface roughness on several different underlying surfaces and its influence on flux mechanism model simulation [J]. Science in China Series D:Earth Sciences,2006,36(S1):244-254.
[69]
Driese K L, Reiners W A. Aerodynamic roughness parameters for semi-arid natural shrub communities of Wyoming [J]. USA, Agricultural and Forest Meteorology, 1997,88(1-4):1-14.
[70]
杨兴华,艾力·买买提明,张瑞军,等.塔克拉玛干沙漠荒漠过渡带空气动力学粗糙度分析 [J]. 干旱区研究, 2012,29(3):524-528. Yang X H, Ali M, Zhang R J, et al. Analysis on aerodynamic roughness length in a desert transitional zone of the Taklimakan desert [J]. Arid Zone Research, 2012,29(3):524-528.
[71]
石雪峰,夏建新,吉祖稳.空气动力学粗糙度与植被特征关系的研究进展 [J]. 中央民族大学学报(自然科学版), 2006,15(3):218-225. Shi X F, Xia J X, Ji Z W. A review:the study in relationship between aerodynamic roughness length and the characteristics of vegetation [J]. 2006,15(3):218-225.
[72]
蓝 静.珠三角区域气溶胶污染及低能见度过程的数值模拟 [D]. 广州:中山大学, 2013. Lan J. Numerical simulation of aerosol contamination and low visibility processes in the Pearl River Delta region [D]. Guangzhou: Sun Yat-sen University, 2013.
[73]
刘新峰,袁 惠,杨 军,等.统计分析方法在大气环境监测数据符合性分析中的应用探讨 [J]. 四川环境, 2012,31(2):36-39. Liu X F, Yuan H, Yang J, et al. Application of statistical analysis for data compliance analysis of atmosphere environmental monitoring [J]. Sichuan Environment, 2012,31(2):36-39.