Abstract:This paper selects the panel data of 30 provinces and cities in China from 2000 to 2018 to construct the low-carbon energy consumption structure index, and investigates the relationship and heterogeneity between carbon trading policy and the energy consumption structure using multi-period double difference and triple difference methods, and further explores the mechanism of carbon trading policy on the low-carbon energy consumption structure by using multiple intermediary effect model. The results show that carbon trading policy significantly improves the low-carbon level of regional energy consumption structure and the effect keeps increasing year by year. The mechanism analysis shows that the incentive effect of the “four major effects” is obvious, and the effect from large to small is structural optimization effect, behavior-driven effect, ecological innovation effect and environmental protection expenditure effect. From the perspective of heterogeneity, the implementation of policies in regions with slower GDP growth has accelerated the low-carbon transition of energy consumption structure, and the impact is significantly higher than that in regions with faster GDP growth; carbon trading policy has a significant positive effect on the eastern region, but no significant effect on the central and western regions.
柳亚琴, 孙薇, 朱治双. 碳市场对能源结构低碳转型的影响及作用路径[J]. 中国环境科学, 2022, 42(9): 4369-4379.
LIU Ya-qin, SUN Wei, ZHU Zhi-shuang. The impact of carbon market on the low - carbon transition of energy mix and its action path. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 4369-4379.
徐 政,左晟吉,丁守海.碳达峰、碳中和赋能高质量发展:内在逻辑与实现路径 [J]. 经济家, 2021,(11):62-71. Xu Z, Zuo C J, Ding S H. Carbon Peak, Carbon Neutrality Empowers High-Quality Development: Internal Logic and Realization Path [J]. Economist, 2021,(11):62-71.
[2]
李俊峰,李 广,中国能源、环境与气候变化问题回顾与展望 [J]. 环境与可持续发展, 2020,45(5):8-17. Li J F, Li G. Review and prospect of energy, environment and climate change in China [J]. Environment and Sustainable Development, 2020,45(5):8-17.
[3]
范秋芳,张园园.碳排放权交易政策对碳生产率的影响研究 [J]. 工业技术经济, 2021,40(12):113-121. Fan Q F, Zhang Y Y. Research on the Impact of Carbon Emission Trading Policy on Carbon Productivity [J]. Journal of Industrial Technological Economics, 2021,40(12):113-121.
[4]
周彦楠,何 则,马 丽,等.中国能源消费结构地域分布的时空分异及影响因素 [J]. 资源科学, 2017,39(12):2247-2257. Zhou Y N, He Z, Ma L, et al. Spatial and temporal differentiation of China's provincial scale energy consumption structure [J]. Resources Science, 2017,39(12):2247-2257.
[5]
Xia C X, Wang Z. Drivers analysis and empirical mode decomposition based forecasting of energy consumption structure [J]. Journal of Cleaner Production, 2020,254(C):120107.
[6]
王风云,苏烨琴.京津冀能源消费结构变化及其影响因素 [J]. 城市问题, 2018,(8):59-67. Wang F Y, Su Y Q. Changes in Beijing-Tianjin-Hebei energy consumption structure and its influencing factors [J]. Urban Problems, 2018,(8):59-67.
[7]
张倩倩,李百吉.基于路径分析法的能源结构影响因素效应分析与政策优化 [J]. 企业经济, 2017,36(8):11-17. Zhang Q Q, Li B J. Effect analysis and policy optimization of energy structure influencing factors based on path analysis method [J]. Enterprise Economy, 2017,36(8):11-17.
[8]
翁智雄,马忠玉,葛察忠,等.不同经济发展路径下的能源需求与碳排放预测——基于河北省的分析 [J]. 中国环境科学, 2019,39(8): 3508-3517. Weng Z X, Ma Z Y, Ge C Z, et al. Projection on energy demand and carbon emission in various economic developing pathways——A case study in Hebei province [J]. China Environmental Science, 2019,39(8): 3508-3517.
[9]
李洪兵,张吉军.中国能源消费结构及天然气需求预测 [J]. 生态经济, 2021,37(8):71-78. Li H B, Zhang J J. China’s energy consumption structure and forecast on natural gas demand [J]. Ecological Economy, 2021,37(8):71-78.
[10]
谢小军,邱云兰,时 凌.基于ARIMA和BP神经网络组合模型的能源消费预测 [J]. 数学的实践与认识, 2019,49(10):292-298. Xie X J, Qiu Y L, Shi L. Prediction of energy consumption based on ARIMA and BP neural network combined model [J]. Mathematics in Practice and Theory, 2019,49(10):292-298.
[11]
Liu Y Q, Zhao G H, Zhao Y S. An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure [J]. Energy Policy, 2016,96:524-533.
[12]
Xu G Y, Peter Schwarz, Yang H. Adjusting energy consumption structure to achieve China's CO2 emissions peak [J]. Renewable and Sustainable Energy Reviews, 2020,122:109737.
[13]
苗 阳,邢文杰,鲍健强.城市能源结构低碳化指标体系及实现路径研究 [J]. 生态经济, 2016,32(5):53-57. Miao Y, Xing W J, Bao J Q. Low-Carbon Index Evaluation System of the Urban Energy Structure and Its Attainment [J]. Ecological Economy, 2016,32(5):53-57.
[14]
周四军,戴思琪.长江经济带能源高质量发展的测度与聚类分析 [J]. 工业技术经济, 2020,39(10):116-124. Zhou S J, Dai S Q. Measurement and Cluster Analysis of High-quality Energy Development in the Yangtze River Economic Belt [J]. Journal of Industrial Technological Economics, 2020,39(10):116-124.
[15]
李荣杰,李 娜,张 静,等.地区能源结构低碳化差异的收敛机制及影响因素——基于加权多维向量夹角指数 [J]. 统计与信息论坛, 2020,35(10):90-99. Li R J, Li N, Zhang J, et al. Regional Differences Convergence of Low-carbon Energy Structure and Influencing Factors: Based on Weighted Multi-Dimensional Vector Angle [J]. Journal of Statistics and Information, 2020,35(10):90-99.
[16]
曾诗鸿,李 璠,翁智雄,等.碳市场的减排效应研究——来自中国碳交易试点地区的经验证据 [J]. 中国环境科学, 2022,42(4):1922-1933. Zeng S H, Li P, Weng Z X, et al. A Study of the Emission Reduction Effects of Carbon Markets: Empirical Evidence from Pilot Carbon Trading Regions in China [J]. China Environmental Science, 2022, 42(4):1922-1933.
[17]
董直庆,王 辉.市场型环境规制政策有效性检验——来自碳排放权交易政策视角的经验证据 [J]. 统计研究, 2021,38(10):48-61. Dong Z Q, Wang H. Validation of Market-based Environmental Policies: Empirical Evidence from the Perspective of Carbon Emission Trading Policies [J]. Statistical Research, 2021,38(10):48-61.
[18]
李若男,杨力俊,赵晓丽.基于空间模型的中国碳交易减排效果分析 [J]. 全球能源互联网, 2021,4(5):486-496. Li R N, Yang L J, Zhao X L. Reduction Effect of China’s Carbon Emission Trading Scheme Based on Spatial Model Analysis [J]. Journal of Global Energy Interconnection, 2021,4(5):486-496.
[19]
任亚运,傅京燕.碳交易的减排及绿色发展效应研究 [J]. 中国人口·资源与环境, 2019,29(5):11-20. Ren Y Y, Fu J Y. Research on the effect of carbon emissions trading on emission reduction and green development [J]. China population, resources and environment, 2019,29(5):11-20.
[20]
廖文龙,董新凯,翁 鸣,等.市场型环境规制的经济效应:碳排放交易、绿色创新与绿色经济增长 [J]. 中国软科学, 2020,(6):159-173. Liao W L, Dong X K, Weng M, et al. Economic Effect of Market- oriented Environmental Regulation: Carbon Emission Trading, Green Innovation and Green Economic Growth [J]. China Soft Science, 2020,(6):159-173.
[21]
胡江峰,黄庆华,潘欣欣.碳排放交易制度与企业创新质量:抑制还是促进 [J]. 中国人口·资源与环境, 2020,30(2):49-59. Hu J F, Huang Q H, Pan X X. Carbon emission trading system and firms’ innovation quality: suppression or promotion [J]. China population, resources and environment, 2020,30(2):49-59.
[22]
谭 静,张建华.碳交易机制倒逼产业结构升级了吗?——基于合成控制法的分析 [J]. 经济与管理研究, 2018,39(12):104-119. Tan J, Zhang J H. Does China’s ETS Force the Upgrade of Industrial Structure—Evidence from Synthetic Control Method [J]. Research on Economics and Management, 2018,39(12):104-119.
[23]
孙振清,李欢欢,刘保留.碳交易政策下区域减排潜力研究——产业结构调整与技术创新双重视角 [J]. 科技进步与对策, 2020,37(15):28-35. Sun Z Q, Li H H, Liu B L. Research on regional emission reduction potential under carbon trading policy: The perspective of industrial restructuring and technological innovation [J]. Science & Technology Progress and Policy, 2020,37(15):28-35.
[24]
任晓松,马 茜,刘宇佳,等.碳交易政策对工业碳生产率的影响及传导机制 [J]. 中国环境科学, 2021,41(11):5427-5437. Ren X S, Ma Q, Liu Y J, et al. The impact of carbon trading policy on industrial carbon productivity and its transmission mechanism [J]. China Environmental Science, 2021,41(11):5427-5437.
[25]
范 英,衣博文.能源转型的规律、驱动机制与中国路径 [J]. 管理世界, 2021,37(8):95-105. Fan Y, Yi B W. Evolution, Driving Mechanism, and Pathway of China’s Energy Transition [J]. Management World, 2021,37(8):49-55.
[26]
Lanoie P, Patry M, Lajeunesse R. Environmental Regulation and Productivity: Testing the Porter Hypothesis [J]. Journal of Productivity Analysis, 2008,30(2):121-128.
[27]
李 强,丁春林.环境规制、空间溢出与产业升级——来自长江经济带的例证 [J]. 重庆大学学报(社会科学版), 2019,25(1):17-28. Li Q, Ding C L. Environmental regulation, spatial spillover and industrial upgrading: Evidence from the Yangtze River Economic Zone [J]. Journal of Chongqing University ( Social Science Edition), 2019,25(1):17-28.
[28]
姜 楠.环保财政支出有助于实现经济和环境双赢吗? [J]. 中南财经政法大学学报, 2018,(1):95-103. Jiang N. Does Environmental Fiscal Expenditure Help Achieve a Win-Win Economy and Environment? [J]. Journal of Zhongnan University of Economics and Law, 2018,(1):95-103.
[29]
田淑英,董 玮,许文立.环保财政支出、政府环境偏好与政策效应——基于省际工业污染数据的实证分析 [J]. 经济问题探索, 2016,(7):14-21. Tian S Y, Dong W, Xu W L. Environmental Fiscal Expenditure, Government Environmental Preference and Policy Effects: An Empirical Analysis Based on Inter-provincial Industrial Pollution Data [J]. Inquiry into Economic Issues, 2016,(7):14-21.
[30]
杜雯翠.环保投资、环境技术与环保产业发展——来自环保类上市公司的经验证据 [J]. 北京理工大学学报(社会科学版), 2013,15(3):47-53. Du W C. Environmental Investment, Environmental Technology and Environmental Industry Development: Evidence from Environmental Listed Companies [J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2013,15(3):47-53.
[31]
张 华,冯 烽.非正式环境规制能否降低碳排放?——来自环境信息公开的准自然实验 [J]. 经济与管理研究, 2020,41(8):62-80. Zhang H, Feng F. Does Informal Environmental Regulation Reduce Carbon Emissions?—Evidence from a Quasi-natural Experiment of Environmental Information Disclosure [J]. Research on Economics and Management, 2020,41(8):62-80.
[32]
郭 进,徐盈之.公众参与环境治理的逻辑、路径与效应 [J]. 资源科学, 2020,42(7):1372-1383. Guo J, Xu Y Z. The logics, paths, and effects of public participation in environmental management [J]. Resources Science, 2020,42(7):1372-1383.
[33]
盛光华,龚思羽,解 芳.中国消费者绿色购买意愿形成的理论依据与实证检验——基于生态价值观、个人感知相关性的TPB拓展模型 [J]. 吉林大学社会科学学报, 2019,59(1):140-151,222. Sheng G H, Gong S Y, Xie F. Theoretical basis and empirical test on the formation of Chinese consumers'green purchasing intention: TPB expansion model based on ecological values and personal perception correlation [J]. Jilin University Journal Social Sciences Edition, 2019,59(1):140-151,222.
[34]
付凌晖.我国产业结构高级化与经济增长关系的实证研究 [J]. 统计研究, 2010,27(8):79-81. Fu L H. An Empirical Research on Industry Structure and Economic Growth [J]. Statistical Research, 2010,27(8):79-81.
[35]
曾 刚,陆琳忆,何金廖.生态创新对资源型城市产业结构与工业绿色效率的影响 [J]. 资源科学, 2021,43(1):94-103. Zeng G, Lu L Y, He J L. Impact of ecological innovation on the economic transformation of resource-based cities [J]. Resources Science, 2021,43(1):94-103.
[36]
Wheeler D, Pargal S. Informal regulation of industrial pollution in developing countries: evidence from Indonesia [J]. Journal of Political Economy, 1999,104(6):1314-1327.
[37]
秦炳涛,余润颖,葛力铭.环境规制对资源型城市产业结构转型的影响 [J]. 中国环境科学, 2021,41(7):3427-3440. Qin B T, Yu R Y, Ge L M. The impact of environmental regulation on the industrial structure transformation of resource-based cities [J]. China Environmental Science, 2021,41(7):3427-3440.
[38]
中华人民共和国国家统计局.新中国六十年统计资料汇编 [M]. 北京:中国统计出版社, 2010. National Bureau of Statistics of China. China Compendium of statistics data 1949~2008 [M]. Beijing:China Statistics Press, 2010.
[39]
温忠麟,叶宝娟.中介效应分析:方法和模型发展 [J]. 心理科学进展, 2014,22(5):731-745. Wen Z L, Ye B J. Analyses of Mediating Effects: The Development of Methods and Models [J]. Advances in Psychological Science, 2014, 22(5):731-745.
[40]
易 兰,李朝鹏,杨 历,等.中国7大碳交易试点发育度对比研究 [J]. 中国人口·资源与环境, 2018,28(2):134-140. Yi L, Li C P, et al. Comparative study on the development degree of China’s 7pilot carbon markets [J]. China population, resources and environment, 2018,28(2):134-140.
[41]
包 群,彭水军.经济增长与环境污染:基于面板数据的联立方程估计 [J]. 世界经济, 2006,(11):48-58. Bao Q, Peng S J. Economic Growth and Environmental Pollution: Simultaneous Equation Estimation Based on Panel Data [J]. The Journal of World Economy, 2006,(11):48-58.
[42]
余 萍,刘纪显.碳交易市场规模的绿色和经济增长效应研究 [J]. 中国软科学, 2020,(4):46-55. Yu P, Liu J X. Research on the Effects of Carbon Trading Market Size on Environment and Economic Growth [J]. China Soft Science, 2020, (4):46-55.