Spatial and temporal distribution of CO2 concentration in mainland China and its influencing factors
RENYANG Qian-qian1, LIAN Yi1,2, LI Hai-xiao3, GAO Hui-chun1, DONG Jian-kang1, HE Meng-xuan1
1. School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China; 2. National Astronomical Observatory of the Chinese Academy of Sciences, Beijing 100012, China; 3. Hubei Polytechnic University, Huangshi 435003, China
Abstract:This paper analyzes the spatiotemporal characteristics of CO2 concentration distribution in China mainland during 2015~2019 and the driving factors by integrating CO2 data from the European Centre for Medium-Range Weather Forecast (ECMWF), MODIS data, and population, GDP, energy consumption data from China Yearbook. The results of geographically weighted regression analysis and correlation analysis show that the atmospheric CO2 in China rose periodically. Human activity is the principal factor affecting CO2 concentration. The effects of natural and human activities on atmospheric present high heterogeneity in different regions.
任杨千千, 连懿, 李海笑, 高晖春, 董建康, 贺梦璇. 中国大陆CO2浓度时空分布特征及驱动因素[J]. 中国环境科学, 2023, 43(4): 1919-1929.
RENYANG Qian-qian, LIAN Yi, LI Hai-xiao, GAO Hui-chun, DONG Jian-kang, HE Meng-xuan. Spatial and temporal distribution of CO2 concentration in mainland China and its influencing factors. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(4): 1919-1929.
邓安健,郭海波,胡 洁,等.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020,24(3):319-325. Deng A J, Guo H B, Hu J, et al. Temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data[J]. Journal of Remote Sensing(Chinese), 2020,24(3):319-325.
[2]
Zhu X H, Lu K F, Peng Z R, et al. Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale:Characterization of distribution patterns and contributions of emission sources[J]. Sustainable Cities and Society, 2022,78:103646.
[3]
Li C, Li H, Qin X. Spatial heterogeneity of carbon emissions and its influencing factors in China:Evidence from 286 prefecture-level cities[J]. International Journal of Environmental Research and Public Health, 2022,19(3):1226.
[4]
Wang Q, Chiu Y H, Chiu C R. Driving factors behind carbon dioxide emissions in China:A modified production-theoretical decomposition analysis[J]. Energy Economics, 2015,51:252-260.
[5]
Jung M, Reichstein M, Schwalm C R, et al. Compensatory water effects link yearly global land CO2 sink changes to temperature[J]. Nature, 2017,541(7638):516-520.
[6]
Humphrey V, Zscheischler J, Ciais P, et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage[J]. Nature, 2018,560(7720):628-631.
[7]
Zhang M N, Trevor F, Keenan, Luo X Z, et al. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar[J]. Science of the Total Environment, 2022,810, 152235.
[8]
Nicolas Delbart, Spring Phenology of the Boreal Ecosystems, Arctic Hydrology, Permafrost and Ecosystems, 2021:559-581.
[9]
庄亚辉.全球生物地球化学循环研究的进展[J]. 地学前缘, 1997,(Z1):167-172. Zhang Y H. Advances in global biogeochemical cycling studies[J]. Earth Science Frontiers, 1997,(Z1):167-172.
[10]
Piao S, Liu Q, Chen A, et al. Plant phenology and global climate change:Current progresses and challenges[J]. Global Change Biology, 2019,25(6):1922-1940.
[11]
周慧敏.陆地生态系统净CO2交换的空间格局及其模型关键参数优化[D]. 上海:华东师范大学, 2021. Zhou H M. Spatial pattern of net CO2 exchange in terrestrial ecosystems and optimization of its model parameters[D]. Shanghai:East China Normal University, 2021.
[12]
王立猛,何康林.基于STIRPAT模型的环境压力空间差异分析——以能源消费为例[J]. 环境科学学报, 2008,(5):1032-1037. Wang L M, He K L. Analysis of spatial variations in environmental impact based on the STIRPAT model——A case study of energy consumption[J]. Acta Scientiae Circumstantiae, 2008,(5):1032-1037.
[13]
卢 娜,曲福田,冯淑怡,等.基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J]. 自然资源学报, 2011,26(5):814-824. Lu N, Qu F T, Feng S Y, et al. Trends and determining factors of energy consumption carbon footprint——An analysis for Suzhou-Wuxi-Changzhou region based on STIRPATM model[J]. Journal of Natural Resources, 2011,26(5):814-824.
[14]
Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951,116:770-808.
[15]
赵 晶,王乃昂.近50年来兰州城市气候变化的R/S分析[J]. 干旱区地理, 2002,(1):90-95. Zhao J, Wang N A. analysis of urbanization effect on climate in Lanzhou[J]. Arid Land Geography, 2002,(1):90-95.
[16]
杨 强,王婷婷,陈 昊,等.基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J]. 农业工程学报, 2015,31(22):191-198,315. Yang Q, Wang T T, Chen H, et al. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198,315.
[17]
龙家勇,吴承祯,洪 伟,等.中国省域二氧化碳排放量的空间自相关分析[J]. 生态经济, 2011,(10):49-53. Long J Y, Wu C Z, Hong W, et al. Spatial autocorrelation analysis of Chinese provincial carbon dioxide emissions[J]. Ecological Economy, 2011,(10):49-53.
[18]
卢宾宾,葛 咏,秦 昆,等.地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020,45(9):1356-1366. Lu B B, Ge Y, Qin K, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020,45(9):1356-1366.
[19]
Huang N, Wang L, Song X P, et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover[J]. Science Advances, 2020,6(41):eabb8508.
[20]
Pierre F, Matthew W J, Michael O, et al. Global Carbon Budget 2021, Earth Syst. Sci. Data, 14,1917-2005, https://doi.org/10.5194/essd-14-1917-2022,2022.
[21]
张绍会,谢 冰,张 华,等.基于AIRS卫星的全球和东亚地区CO2时空特征分析[J]. 大气与环境光学学报, 2019,14(6):442-454. Zhang S H, Xie B, Zhang H, et al. Spatial-Temporal distribution characteristics of CO2 over globe and east asia by AIRS satellite[J]. Journal of atmospheric and environmental optics, 2019,14(6):442-454.
[22]
张 扬.干旱绿洲区葡萄农田碳收支过程研究[D]. 兰州:兰州大学, 2021. Zhang Y. Study on carbon budget process of grape farmland in Arid Oasis region[D]. Lanzhou:Lanzhou University, 2021.
[23]
Bacastow R B. Atmospheric carbon dioxide concentration and the observed airborne fraction[J]. Carbon Cycle Modelling, 1981:103-112.
[24]
Lintner B R. Characterizing global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis[J]. Geophysical Research Letters, 2002,29(19):27-1-27-4.
[25]
Jones C D, Cox P M. Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2[J]. Atmospheric Science Letters, 2001,2(1-4):166-172.
[26]
Gérard J C, Nemry B, Francois L M, et al. The interannual change of atmospheric CO2:Contribution of subtropical ecosystems?[J]. Geophysical Research Letters, 1999,26(2):243-246.