Airborne observation of carbon dioxide concentration in central and southern Hebei Province
XIE Wen-qi1,2, YAO Bo3,4, WU Guo-ming5, DONG Hang-yu5, MAI Rong6, XU Lin7
1. Jiangxi Agricultural Meteorology Center, Nanchang 330096, China; 2. Nanchang County Meteorological Bureau, Nanchang 330200, China; 3. Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; 4. Meteorological Observation Centre of China Meteorological Administration, Beijing 100081, China; 5. Hebei Institute of Meteorological Sciences, Shijiazhuang 050020, China; 6. Weather Modification Center of Hebei Province, Shijiazhuang 050020, China; 7. Beijing Honglin Universe Technology Co., Ltd., Beijing 100041, China
Abstract:CO2 concentrations above Shijiazhuang and Xingtai (600~5600m) were detected by CO2 analyzer and related auxiliary equipment on an airborne observation platform of King-air 350 to characterize the spatial and temporal distribution of tropospheric CO2 in central and southern Hebei Province. 7CO2 concentration vertical profiles were achieved through 4flights. The minimum and maximum of CO2 concentrations during the observation period were 398.3×10-6 and 414.6×10-6, respectively, while the averaged CO2 concentrations of each flight varied from 401.4×10-6 to 403.9×10-6. There is no consistent pattern of CO2 concentration trends with the increase of altitude. The boundary layer heights during the observation period were about 1000~2000m. The CO2 concentration varied significantly below 1000m due to the influence of near-surface emission sources. However, CO2 concentrations generally had a short-term decreasing trend over the height of 2500m, and was close to the background concentrations at higher levels. The CO2 concentrations over Xingtai was significantly correlated with CH4 concentrations, with the correlation coefficient r≥0.90, which indicated that the enhanced CO2 and CH4 concentrations at Xingtai might come from the same source.
WMO Greenhouse Gas Bulletin No.14 [EB/OL]. https://library.wmo.int/doc_num.php?explnum_id=5455.
[2]
Greenhouse gas bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2018 [R]. WMO, 2019.
[3]
IPCC. Climate Change: The Physical Science Basis. Contribution to Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
[4]
程振华,王玮.全球二氧化碳的分布和循环:全球“温室效应”探讨之一 [J]. 环境科学研究, 1989,2(4):52-59. Chen Z H. Wang W. The distribution and recycling of carbon dioxide in the word [J]. Research of Environmental Sciences, 1989,2(4):52-59.
[5]
权维俊,姚 波,刘伟东,等.我国大气本底观测站创新发展的思考和建议 [J]. 科学通报, 2021,66(19):2367-2377. Qun W J, Yao B, Liu W D, et al. The innovative development of atmospheric background stations in China: Thoughts and recommendations [J]. Science China Press, 2021,66(19):2367-2377.
[6]
Biraud S C, Torn M S, Smith J R, et al. A multi-year record of airborne CO2observations in the US Southern Great Plains [J]. Atmospheric Measurement Techniques, 2013,6:751-763.
[7]
Karion A, Sweeney C, Wolter S, et al. Long-term greenhouse gas measurements from aircraft [J]. Atmospheric Measurement Techniques, 2012,5(5):7341-7382.
[8]
Kristal R. Verhulst et al. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project-Part 1: Calibration, urban enhancements, and uncertainty estimates [J]. Atmospheric Chemistry and Physics, 2017,17(13):8313-8341.
[9]
Ryoo J M, Iraci L T, Tanaka T, et al. Quantification of CO2 and CH4emissions over Sacramento, California, based on divergence theorem using aircraft measurements [J]. Atmospheric Measurement Techniques, 2019,12(5):2949-2966.
[10]
Davis K J, Deng A, Lauvaux T, et al. The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements [J]. Elementa-Science of the Anthropocene, 2017,5:21.
[11]
杨强,马千里,姚 波,等.唐山上空CO2和CO浓度特征的飞机探测研究 [J]. 中国环境科学, 2020,40(4):1460-1467. Yang Q, Ma Q L, Yao B, et al. The characteristic of atmospheric CO2 and CO concentrations based on aircraft observation over Tangshan [J]. China Environmental Science, 2020,40(4):1460-1467.
[12]
杨洋,董晓波,麦 榕,等.河北省中南部对流层CH4时空分布特征的飞机探测研究 [J]. 中国环境科学, 2019,39(11):4604-4610. Yang Y, Dong X B, Mai R, et al. Temporal and spatial distribution of tropospheric CH4 based on aircraft observation in central and southern Hebei province [J]. China Environmental Science, 2019,39(11): 4604-4610.
[13]
中华人民共和国.中华人民共和国气候变化第二次两年更新报告 [EB/OL]. https://unfccc.int/documents/197666. People's Republic of China. Second biennial update report on climate change in the People's Republic of China [EB/OL]. https://unfccc.int/documents/197666.
[14]
张志刚,高庆先,韩雪琴,等.中国华北区域城市间污染物输送研究 [J]. 环境科学研究, 2004,17(1):14-20. Zhang Z G, Gao Q X, Han X Q, et al. The study of pollutant transport between the cites in North China [J]. Research of Environmental Sciences, 2004,17(1):14-20.
邢有凯, 毛显强, 冯相昭, 等. 城市蓝天保卫战行动协同控制局地大气污染物和温室气体效果评估——以唐山市为例 [J]. 中国环境管理, 2020, 12 (4): 20-28. Xing Y K, Mao X Q, Feng X Z, et al. An effectiveness evaluation of co-controlling local air pollutants and GHGs by implementing blue sky defense action at city level—a case study of Tangshan [J]. Chinese Journal of Environmental Management, 2020,12(4):20-28.
[17]
沙 桐,马晓燕,银 燕,等.石家庄地区气溶胶和CCN垂直廓线的飞机观测分析 [J]. 大气科学学报, 2019,42(4):521-530. Sha T, Ma X Y, Yin Y, et al. Aircraft measurements and analysis of the vertical distribution of aerosol particles and CCN over the Shijiazhuang area [J]. Transactions of Atmospheric Sciences, 2019, 42(4):521-530.
[18]
张晓春,蔡永祥,温玉璞,等.大气CO2标准气浓度标定及采样瓶CO2浓度分析系统 [J]. 气象科技, 2005,33(6):538-542. Zang X C, Cai Y X, Wen Y P, et al. Weather condition analysis for a serious local air pollution event [J]. Meteorological Science and Technology, 2005,33(6):538-542.
[19]
程巳阳,安兴琴,周凌晞,等.北京上甸子大气本底站CO2浓度的源汇区域代表性研究 [J]. 中国环境科学, 2015,35(9):2576-2584. Cheng S Y, An X Q, Zhou L X, et al. CO2 concentration representation of source and sink area at Shangdianzi atmospheric background station in Beijing [J]. China Environmental Science, 2015,35(9):2576-2584.
[20]
中国气象局气候变化中心.中国温室气体公报 [EB/OL]. http://www.cma.gov.cn/root7/auto13139/201904/t20190430_523535.html. Climate Change Center of China Meteorological Administration. China Greenhouse Gas Bulletin [EB/OL].
[21]
Font A, Grimmond B, Kotthaus B S, et al. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London [J]. Environmental Pollution, 2015,196:98-106.
[22]
Gioli B, Maria F, Carfora V M, et al. Aircraft mass budgeting to measure CO2 emissions of Rome, Italy [J]. Environmental Monitoring and Assessment, 2014,186:2053–2066.
[23]
白文广,张兴赢,张鹏.卫星遥感监测中国地区对流层二氧化碳时空变化特征分析 [J]. 科学通报, 2010,55(30):2953-2960. Bai W G, Zhang X Y, Zhang P. Analysis of temporal and spatial variation characteristics of tropospheric carbon dioxide monitored by satellite remote sensing in China [J]. Science Bulletin, 2010,55(30): 2953-2960.
[24]
周聪,施润和,高 炜.对流层中层与近地面大气二氧化碳浓度的比较研究 [J]. 地球信息科学学报, 2015,17(11):1286-1293. Zhou C, Shi R H, Gao W. Comparison of carbon dioxide in mid-troposphere and near-surface [J]. Journal of Geo-information Science, 2015,17(11):1286-1293.
[25]
夏玲君,刘立新.北京上甸子站大气CH4数据筛分及变化特征 [J]. 中国环境科学, 2017,37(11):4044-4051. Xia L J, Liu L X. Data selection and variation characteristics of atmospheric CH4 observed at Shangdianzi station in Beijing [J]. China Environmental Science, 2017,37(11):4044-4051.