Abstract:To study the impact of the market-oriented allocation of energy on TFP, which is the core indicator of high-quality development (HQD), and its effect of pollution abatement and carbon reduction (PACR) to explore the possibility of the synergy of HQD and PACR, a stochastic frontier production function was utilized to estimate the change and decomposition of China's industrial TFP from 2010 to 2020, and the impact on the change of TFP and its energy saving potential based on the optimal allocation in a fully competitive market were estimated. Based on the estimation, the potential and effect of PACR were calculated. The study found that: China's industrial TFP growth was sluggish, but the market-oriented allocation of energy could promote TFP growth; Market-oriented allocation of energy could bring significant potential and effect of PACR. The annual reduction was about 15%~20% of the actual emissions. By continuously promoting energy marketization, with a sound institutional system and a reasonable energy price system, synergy of HQD and PACR could be achieved.
许光清, 张文丹, 陈晓玉. 能源优化配置促进高质量发展与减污降碳协同研究[J]. 中国环境科学, 2023, 43(6): 3220-3230.
XU Guang-qing, ZHANG Wen-dan, CHEN Xiao-yu. Study of the synergy of high-quality development and pollution abatement and carbon reduction promoted by energy optimal allocation. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(6): 3220-3230.
杜忠明,周天睿.我国能源电力行业减污降碳协同增效的思路探析[J]. 环境保护, 2022,50(10):21-23. Du Z M, Zhou T R. Analysis of the idea of pollution reduction and carbon reduction synergy in China's energy and power industry[J]. Environmental Protection, 2022,50(10):21-23.
[2]
马 丁,陈文颖.中国钢铁行业技术减排的协同效益分析[J]. 中国环境科学, 2015,35(1):298-303. Ma D, Chen W Y. Analysis of the co-benefit of emission reduction measures in China's iron and steel industry[J]. China Environmental Science, 2015,35(1):298-303.
[3]
周 颖,张宏伟,蔡博峰,等.水泥行业常规污染物和二氧化碳协同减排研究[J]. 环境科学与技术, 2013,36(12):164-168. Zhou Y, Zhang H W, Cai B F, et al. Synergetic reduction of local pollutants and CO2 from cement industry[J]. Environmental Science & Technology, 2013,36(12):164-168.
[4]
许光清,温敏露,冯相昭,等.城市道路车辆排放控制的协同效应评价[J]. 北京社会科学, 2014,(7):82-90. Xu G Q, Wen M L, Feng X Z, et al. Co-benefits of road transport policy in reducing air pollutants and greenhouse gas emissions in China[J]. Social Sciences of Beijing, 2014,(7):82-90.
[5]
冯相昭,赵梦雪,王 敏,等.中国交通部门污染物与温室气体协同控制模拟研究[J]. 气候变化研究进展, 2021,17(3):279-288. Feng X Z, Zhao M X, Wang M, et al. Simulation research on co-controlling pollutants and greenhouse gases emission in China's transportation sector[J]. Climate Change Research, 2021,17(3):279-288.
[6]
狄乾斌,陈小龙,侯智文."双碳"目标下中国三大城市群减污降碳协同治理区域差异及关键路径识别[J]. 资源科学, 2022,44(6):1155-1167. Di Q B, Chen X L, Hou Z W. Regional differences and key pathway identification of the coordinated governance of pollution control and carbon emission reduction in the three major urban agglomerations of China under the "Double-Carbon" targets[J]. Resources Science, 2022,44(6):1155-1167.
[7]
杨添棋,王洪昌,张 辰,等.京津冀及周边地区"2+26"城市结构性调整政策的CO2协同减排效益评估[J]. 环境科学, 2022,43(11):5315-5325. Yang T Q, Wang H C, Zhang C, et al. Carbon dioxide mitigation co-effect analysis of structural adjustment 15 measures in the "2+26" cities in the Jing-Jin-Ji and its surroundings[J]. Environmental Science, 2022,43(11):5315-5325.
[8]
康 哲,李 巍,刘 伟.黄河流域城市群工业减污降碳影响因素及协同推进策略研究[J]. 中国环境科学:1-12[2022-11-26]. DOI:10. 19674/j.cnki.issn1000-6923.20221123.015. Kang Z, Li W, Liu W. Influencing factors and synergistic promotion strategy of industrial pollution and carbon reduction at urban agglomerations of the Yellow River Basin.
[9]
唐湘博,张 野,曹利珍,等.中国减污降碳协同效应的时空特征及其影响机制分析[J]. 环境科学研究, 2022,35(10):2252-2263. Tang X B, Zhang Y, Cao L Z, et al. Spatio-Temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J]. Research of Environmental Sciences, 2022,35(10):2252-2263.
[10]
谢元博,李 巍.基于能源消费情景模拟的北京市主要大气污染物和温室气体协同减排研究[J]. 环境科学, 2013,34(5):3057-2064. Xie Y B, Li W. Synergistic emission reduction of chief air pollutants and greenhouse gases based on scenario simulations of energy consumptions in Beijing[J]. Environmental Science, 2013,34(5):3057-2064.
[11]
俞 珊,张 双,张增杰,等.北京市减污降碳协同控制情景模拟和效应评估[J]. 环境科学:1-17[2022-11-15]. DOI:10.13227/j.hjkx. 202204344. Yu S, Zhang S, Zhang Z J, et al. Scenario simulation and effects assessment of co-control on pollution and carbon emissions reduction in Beijing[J]. Environmental Science:1-17[2022-11-15]. DOI:10.13227/j.hjkx.202204344.
[12]
李敏姣,李 燃,李怀明,等.天津市"十三五"期间大气污染防治措施对PM2.5和CO2的协同控制效益分析[J]. 环境污染与防治, 2021, 43(12):1614-1624. Li M J, Li R, Li H M, et al. Analysis of the synergistic effect of various on PM2.5 concentration improvement and CO2 emission reduction during the 13th Five-Year Plan period in Tianjin[J]. Environmental Pollution & Control, 2021,43(12):1614-1624.
[13]
刘茂辉,岳亚云,刘胜楠,等.基于STIRPAT模型天津减污降碳协同效应多维度分析[J]. 环境科学:1-13[2022-11-15]. DOI:10.13227/j.hjkx.202204086. Liu M H, Yue Y Y, Liu S N, et al. Multi-dimensional analysis of the synergistic effect of pollution reduction and carbon reduction in Tianjin based on the STIRPAT model[J]. Environmental Science:1-13[2022-11-15].DOI:10.13227/j.hjkx.202204086.
[14]
毛显强,曾 桉,邢有凯,等.从理念到行动:温室气体与局地污染物减排的协同效益与协同控制研究综述[J]. 气候变化研究进展, 2021,17(3):255-267. Mao X Q, Zeng A, Xing Y K, et al. From concept to action:a review of research on co-benefits and co-control of greenhouse gases and local air pollutants reductions[J]. Climate Change Research, 2021, 17(3):255-267.
[15]
毛显强,邢有凯,高玉冰,等.温室气体与大气污染物协同控制效应评估与规划[J]. 中国环境科学, 2021,41(7):3390-3398. Mao X Q, Xing Y K, Gao Y B, et al. Study on GHGs and air pollutants co-control:assessment and planning[J]. China Environmental Science, 2021,41(7):3390-3398.
[16]
毛显强,曾 桉,胡 涛,等.技术减排措施协同控制效应评价研究[J]. 中国人口·资源与环境, 2011,21(12):1-7. Mao X Q, Zeng A, Hu T, et al. Study of coordinate control effect assessment of technological measures for emissions reduction[J]. China Population, Resources and Environment, 2011,21(12):1-7.
[17]
陈 菡,陈文颖,何建坤.实现碳排放达峰和空气质量达标的协同治理路径[J]. 中国人口·资源与环境, 2020,30(10):12-18. Chen H, Chen W Y, He J K. Pathway to meet carbon emission peak target and air quality standard for China[J]. China Population, Resources and Environment, 2020,30(10):12-18.
[18]
向梦宇,王 深,吕连宏,等.基于不同电力需求的中国减污降碳协同增效路径[J]. 环境科学:1-20[2022-11-15]. DOI:10.13227/j.hjkx. 202207256. Xiang M Y, Wang S, Lv L H, et al. Synergistic paths of reduce pollution and carbon emissions based on different power demand in China[J]. Environmental Science:1-20[2022-11-15].DOI:10.13227/j.hjkx.202207256.
[19]
Lau, L J, Yotopoulos, P. A test of relative efficiency and application to Indian agriculture[J]. American Economic Review, 1971,(61):94-109.
[20]
Johnson, H G. Factor market distortions and the shape of the transformation curve[J]. Econometrica, 1966,34(3):686-698.
[21]
Bhagwati J, Ramaswami, V K. Domestic distortions, tariffs and the theory of optimum subsidy[J]. Journal of Political Economy, 1963, 71(1):44-50.
[22]
Huang Y S. How did China take off?[J]. Journal of Economic Perspectives, 2012,26(4):147-170.
[23]
盖庆恩,朱 喜,程名望,等.要素市场扭曲、垄断势力与全要素生产率[J]. 经济研究, 2015,50(5):61-75. Gai Q E, Zhu X, Cheng M W, et al. Factor market distortion, markup and TFP[J]. Economic Research Journal, 2015,50(5):61-75.
[24]
林伯强,杜克锐.要素市场扭曲对能源效率的影响[J]. 经济研究, 2013,48(9):125-136. Lin B Q, Du K R. The energy effect of factor market distortion in China[J]. Economic Research Journal, 2013,48(9):125-136.
[25]
张家豪,高 原.跨区域环境协同治理对企业全要素生产率的影响[J]. 中国环境科学, 2022,42(9):4457-4464. Zhang J H, Gao Y. The impact of cross——regional environment collaborative governance on firms' total factor productivity[J]. China Environmental Science, 2022,42(9):4457-4464.
[26]
范 丹,付嘉为.环境信息披露对企业全要素生产率的影响[J]. 中国环境科学, 2021,41(7):3463-3472. Fan D, Fu J W. The impact of environmental information disclosure on enterprises' total factor productivity[J]. China Environmental Science, 2021,41(7):3463-3472.
[27]
韩 剑,郑秋玲.政府干预如何导致地区资源错配——基于行业内和行业间错配的分解[J]. 中国工业经济, 2014,(11):69-81. Han J, Zheng Q L. How does government intervention lead to regional resource misallocation-based on decomposition of misallocation within and between industries[J]. China Industrial Economics, 2014,(11):69-81.
[28]
王 文,牛泽东.资源错配对中国工业全要素生产率的多维影响研究[J]. 数量经济技术经济研究, 2019,36(3):20-37. Wang W, Niu Z D. Resources misallocation and multi-dimensional industrial TFP in China[J]. The Journal of Quantitative & Technical Economics, 2019,36(3):20-37.
[29]
孙传旺,林伯强.中国工业能源要素配置效率与节能潜力研究[J]. 数量经济技术经济研究, 2014,31(5):86-99. Sun C W, Lin B Q. Energy resource allocation efficiency and energy conservation potential of China's industrial sectors[J]. The Journal of Quantitative & Technical Economics, 2014,31(5):86-99.
[30]
许光清,陈晓玉.考虑能源的中国经济要素再配置效应[J]. 中国人口·资源与环境, 2021,31(3):128-137. Xu G Q, Chen X Y. China's factor reallocation effect considering energy[J]. China Population, Resources and Environment, 2021,31(3):128-137.
[31]
Yangseon K, Schmidt P. A review and empirical comparison of Bayesian and classical approaches to inference on efficiency levels in stochastic frontier models with panel data[J]. Journal of Productivity Analysis, 2000,14(2):91-118.
[32]
Greene W. Fixed and random effects in stochastic frontier models[J]. Journal of Productivity Analysis, 2005,23(1):7-32.
[33]
Kumbhakar S C, Denny M, Fuss M. Estimation and decomposition of productivity change when production is not efficient:a panel data approach[J]. Econometric Reviews, 2000,19(4):312-320.
[34]
张 军,陈诗一,Gary H J.结构改革与中国工业增长[J]. 经济研究, 2009,44(7):4-20. Zhang J, Chen S Y, Gary H. J. Structural reform and industrial growth in China[J]. Economic Research Journal, 2009,44(7):4-20.
[35]
国家统计局,生态环境部.2021中国环境统计年鉴[M]. 北京:中国统计出版社, 2021. National Bureau of Statistics, Ministry of Ecology and Environment. 2021 China Environmental Yearbook[M]. Beijing:China Statistic Press, 2021.