Low-carbon transition pathways for China's transportation sector under the background of carbon neutrality
JIA Lu-yu1, WANG Ke2
1. Accounting School, Chongqing University of Technology, Chongqing 400054, China; 2. School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
Abstract:This paper developed a Carbon Emission Reduction Model of China's Transportation (CERM-CT) based on the LEAP model framework, which included four categories and 228 emission reduction technologies and measures. The paper set three scenarios-business-as-usual, carbon emission reduction, and deep carbon emission reduction-to analyze the driving forces and service needs in the transportation sector's low-carbon transition. It analyzed the cost-effectiveness of technological measures and proposed a low-carbon transition pathway for China's transportation sector. It was more cost-effective to reduce vehicle energy consumption and develop new energy vehicles, while adjusting transportation structure had great potential for carbon emission reduction. Under the carbon emission reduction scenario, the long-term carbon emissions of transportation would drop to 440million tons in 2050, 69.7% of that under the business-as-usual scenario. The reduction was equivalent to 330million tons compared to the baseline year, and was expected to lead to economy-wide carbon neutrality between 2060~2070. Under the deep carbon emission reduction scenario, transportation emissions would fall to 190million tons in 2050, which translated to 86.9% and 56.9% reduction compared with the business-as-usual and carbon emission reduction scenarios, respectively. In physical terms, the reduction was 580million tons and 250million tons, respectively, compared with the baseline year and carbon emission reduction scenario, expected to lead to economy-wide carbon neutrality by 2060. Improving fuel economy, promoting faster development of new energy vehicles, controlling motor vehicle holdings, and adjusting the transportation structure were essential ways to achieve low-carbon transition in transportation sector, which could contribute to 25.0%, 16.7%, 8.3%, and 50.0% of emission reduction, respectively. The fixed investment demand for the deep carbon emission reduction scenario between 2021~2030 and 2031~2050 were 4.2 trillion RMB and 6.3trillion RMB, respectively, with an average annual investment of 0.4trillion RMB. The investment was mainly used for the building of new infrastructure, renovation of terminal energy equipment and development of low-carbon technologies, among which new infrastructure accounted for over 80% of the total investment in the two time periods. To achieve low-carbon transition, China's transportation sector needs to continuously optimize the transport structure, support the development of new energy vehicles, develop low-carbon technologies, and increase investment in low-carbon infrastructure and technologies.
贾璐宇, 王克. 碳中和背景下中国交通部门低碳发展转型路径[J]. 中国环境科学, 2023, 43(6): 3231-3243.
JIA Lu-yu, WANG Ke. Low-carbon transition pathways for China's transportation sector under the background of carbon neutrality. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(6): 3231-3243.
王庆一.2021能源数据[R]. 北京:绿色创新发展中心, 2022. Wang Q Y.2021Energy Data[R]. Beijing:Green innovation development center, 2022. IEA. World energy Balances 2021[R]. 2022.
[2]
贾璐宇.中国交通部门二氧化碳和大气污染物协同减排效应影响与长期低碳路径研究[D]. 北京:中国人民大学, 2021. Jia L Y. Study on synergistic emission reduction effects of carbon dioxide and air pollutants and the long-term low-carbon path in China's transportation sector[D]. Beijing:Renmin University of China, 2021.
[3]
Ma J, Heppenstall A, Harlan K, et al. Synthesising carbon emission for mega-cities:A static spatial microsimulation of transport CO2 from urban travel in Beijing[J]. Computers, Environment and Urban Systems, 2014,45:78-88.
[4]
Yang L, Wang Y Q, Lian Y J, et al. Factors and scenario analysis of transport carbon dioxide emissions in rapidly-developing cities[J]. Transportation Research Part D:Transport and Environment, 2020, 80:1-27.
[5]
张克勇,刘县美,郭丕斌,等.京津冀交通部门CO2排放的时空差异及影响因素[J]. 系统工程, 2019,37(5):12-20. Zhang K Y, Liu X M, Guo P B, et al. Spatial-temporal differences of CO2 emissions of transport sector in Beijing-Tianjin-Hebei region[J]. Systems Engineering, 2019,37(5):12-20.
[6]
苏城元,陆 键,徐 萍.城市交通碳排放分析及交通低碳发展模式-以上海为例[J]. 公路交通科技, 2012,29(3):142-148. Su C Y, Lu J, Xu P. Analysis of Urban Transport Carbon Emissions and Low-carbon Development Mode-A Case Study of Shanghai[J]. Journal of Highway and Transportation Research and Development, 2012,29(3):142-148.
[7]
马 丁,陈文颖.中国钢铁行业技术减排的协同效益分析[J]. 中国环境科学, 2015,35(1):298-303. Ma D, Chen W Y. Analysis of the co-benefit of emission reduction measures in China's iron and steel industry[J]. China Environmental Science, 2015,35(1):298-303.
[8]
Liao C Y, Wang S, Fang J, et al. Driving forces of provincial-level CO2 emissions in China's power sector based on LMDI method[J]. Energy Procedia, 2019,158:3859-3864.
[9]
Karmellos M, Kopidou D, Diakoulaki D. A decomposition analysis of the driving factors of CO2 emissions from the power sector in the European Union countries[J]. Energy, 2016,94(9):680-692.
[10]
Zhang M, Liu X, Wang W W, et al. Decomposition analysis of CO2 emissions from electricity generation in China[J]. Energy Pol, 2013, 52:159-165.
[11]
Liu N, Ma Z, Kang J D. Changes in carbon intensity in China's industrial sector[J]. Decomposition and attribution analysis, Energy Pol, 2015,87:28-38.
[12]
He Y, Fu F F, Liao N. Exploring the path of carbon emissions reduction in China's industrial sector through energy efficiency enhancement induced by R&D investment[J]. Energy, 2021,225:1-11.
[13]
徐雨晴.何吉成.王长科.33年来中国铁路运输行业的大气污染物排放[J]. 环境科学, 2011,32(5):1217-1223. Xu Y Q, He J C, Wang C K. Air pollutants emissions of locomotives in China railways in recent 33 years[J]. Environmental Science, 2011, 32(5):1217-1223.
[14]
陆潘涛,韩亚龙,戴瀚程.1.5℃和2℃目标下中国交通部门2050年的节能减排协同效益[J]. 北京大学学报(自然科学版), 2021,57(3):517-528. Lu P T, Han Y L, Dai H C. Co-benefits of decarbonizing China's transport sector in energy saving and emission reduction under 1.5-and 2-degree targets in 2050[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021,57(3):517-528.
[15]
周红玉,张琦夫,龙 妍.湖北交通运输能源消费和碳减排潜力分析[J]. 合作经济与科技, 2020,(14):12-15. Zhou H Y, Zhang Q F, Long Y. Analysis on energy consumption and carbon emission reduction potential of transportation in Hubei[J]. Co-Operative Economy & Science, 2020,(14):12-15.
[16]
冯相昭,赵梦雪,王 敏,等.中国交通部门污染物与温室气体协同控制模拟研究[J]. 气候变化研究进展, 2021,17(3):279-288. Feng X Z, Zhao M X, Wang M, et al. Simulation research on co-controlling pollutants and greenhouse gases emission in China's transportation sector[J]. Climate Change Research, 2021,17(3):279-288.
[17]
戈秋虞,徐艺诺,邱荣祖,等.基于系统动力学的城市客运交通减碳情景模拟研究[J/OL]. 气候变化研究进展,https://kns.cnki.net/kcms/detail//11.5368.P.20221202.1548.002.html. Ge Q Y, Xu Y N, Qin Z R, et al. Scenario simulation of urban passenger transportation carbon reduction based on system dynamics[J/OL]. Climate Change Research, https://kns.cnki.net/kcms/detail//11.5368.P.20221202.1548.002.html.
[18]
刘俊伶,王 克,夏侯沁蕊,等.城镇化背景下中国长期低碳转型路径研究[J]. 气候变化研究进展, 2020,16(3):355-366. Liu J L, Wang K, Xiahou Q R, et al. Study on China's long-term low carbon transition pathway under the urbanization process[J]. Climate Change Research, 2020,16(3):355-366.
[19]
刘淳森,曲建升,葛钰洁,等.基于LSTM模型的中国交通运输业碳排放预测[J/OL]. 中国环境科学, https://doi.org/10.19674/j.cnki.issn1000-6923.20221207.010. Liu C S, Qu J S, Ge Y J, et al. Carbon emission forecasting in China's transportation sector based on LSTM model[J]. China Environmental Science, https://doi.org/10.19674/j.cnki.issn1000-6923.20221207.010.
[20]
张少君.中国典型城市机动车排放特征与控制策略研究[D]. 北京:清华大学, 2014. Zhang S J. Characteristics and control strategies of vehicle emissions in typical cities of China[D]. Beijing:Tsinghua University, 2014.
[21]
吴 羽.中国轻型车空气污染物与二氧化碳排放协同控制研究[D]. 北京:清华大学, 2015. Wu Y. Synergic control strategies of air pollutants and CO2 emissions for light-duty vehicles in China[D]. Beijing:Tsinghua University, 2015.
[22]
张泽宸.深圳市大气细颗粒物污染控制措施的成本效益分析[D]. 北京:清华大学, 2017. Zhang Z C. Cost-benefit analysis of fine particulate pollution control in Shenzhen city[D]. Beijing:Tsinghua University, 2017.
[23]
吴潇萌.中国道路机动车空气污染物与CO2排放协同控制策略研究[D]. 北京:清华大学, 2016. Wu X M. Integrated emission mitigation strategies of air pollutants and CO2 for on-road vehicles in China[D]. Beijing:Tsinghua University, 2016.
[24]
Wang W W, Zhang M, Zhou M. Using LMDI method to analyze transport sector CO2emissions in China[J]. Fuel and Energy Abstracts, 2011,36(10):5909-5915.
[25]
齐兴达,李显君,章博文.中国温室气体减排成本有效性分析:以纯电动汽车为例[J]. 技术经济, 2017,36(4):72-78. Qi X D, Li X J, Zhang B W. Cost effectiveness analysis on emission reduction of greenhouse gas in China:taking electric vehicle as example[J]. Technology Economics, 2017,36(4):72-78.
[26]
生态环境部.全国公交车电动化比例已提高至60%[EB/OL]. https://baijiahao.baidu.com/s?id=1681137157371353013&wfr=spider&for=pc2020-10-21/2020-11-05. Ministry of ecology and environment. The proportion of bus electrification in China has increased to 60%[EB/OL]. https://baijiahao.baidu.com/s?id=1681137157371353013&wfr=spider&for=pc2020-10-21/2020-11-05.
[27]
张永伟.中国氢能产业发展报告2020[R]. 北京:中国电动汽车百人会, 2020. Zhang Y W. China's hydrogen energy industry development report 2020[R]. Beijing:China EV100, 2020.
[28]
国务院.国务院关于城市优先发展公共交通的指导意见[EB/OL]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201301/t20130105_65800.html2012-12-29/2021-07-10. The State Council. Guiding opinions of the state council on giving priority to the development of public transport in cities[EB/OL]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201301/t20130105_65800.html2012-12-29/2021-07-10.
Central government portal. Outline development plan for the Guangdong-Hong Kong-Macao Greater Bay Area[EB/OL]. http://www.gov.cn/gongbao/content/2019/content_5370836.htm2019-02-18/2021-07-15.
[31]
国务院.国务院关于打赢蓝天保卫战三年行动计划的通知[EB/OL]. http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm2018-07-03/2020-01-01. The State Council. Circular of the state council on the three-year action plan for winning the blue sky defense war[EB/OL]. (20180703)
清华大学气候变化与可持续发展研究院.中国长期低碳发展战略与转型路径研究[M]. 北京:中国环境出版集团, 2021:84-103. Tsinghua University Institute of Climate Change and Sustainable Development. China's long-term low-carbon development strategies and pathways comprehensive report[M]. Beijing:China Environmental Publishing Group, 2021:84-103.
[33]
Depatment of Economic and Social Affairs. World population outlook 2019[R]. United Nations, 2019. https://population.un.org/wpp/Download/Standard/Population/.
[34]
刘俊伶.中国中长期低碳发展战略目标与实现路径研究[M]. 北京:中国环境出版集团, 2019. Liu J L. Study on China's mid-to-long term low carbon development strategy target and roadmap[M]. Beijing:China Environmental Publishing Group, 2019.
[35]
新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm2021-03-13/2021-03-21. Xinhua News Agency. The 14th Five-Year Plan for national economic and social development of the People's Republic of China and the outline of Vision Goals 2035[EB/OL]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm2021-03-13/2021-03-21.
[36]
国家信息中心.中国经济社会发展的中长期目标、战略与路径[EB/OD]. https://www.efchina.org/Reports-zh/report-lceg-20210207-4-zh2021-02-07/2021-08-29. State Information Center. The medium and long-term goals, strategies and paths of China's economic and social development[EB/OD]. https://www.efchina.org/Reports-zh/report-lceg-20210207-4-zh2021-02-07/2021-08-29..
[37]
国家统计局.中国统计年鉴-2021[M]. 北京:中国统计出版社, 2021. National Bureau of Statistics. China statistical yearbook-2021[M]. Beijing:China Statistics Press, 2021.
[38]
生态环境部.中国移动源环境管理年报2019[R]. 北京:生态环境部, 2019. Ministry of Ecology and Environment. China mobile source environmental management annual report 2019[R]. Beijing:Ministry of Ecology and Environment, 2019.
[39]
贺克斌.2017城市大气污染物排放清单编制技术手册[R]. 2017. He K B. Technical manual for preparation of 2017 urban air pollutant emission inventory[R]. 2017.
[40]
IEA. The future of trucks:implications for energy and the environment[R]. Paris:IEA, 2017. https://doi.org/10.1787/9789264279452-en.
[41]
孙世达,金嘉欣,吕建华,等.基于精细化年均行驶里程建立机动车排放清单[J]. 中国环境科学, 2020,40(5):2018-2029. Sun S D, Jin J X, Lv J H, et al. Developing vehicle emission inventory based on refined annual average vehicle kilometers traveled[J]. China Environmental Science, 2020,40(5):2018-2029.
[42]
He H, Bandivadekar A. Passenger car fuel-efficiency, 2020-2025, comparing stringency and technology feasibility of the Chinese and US standards[R]. Beijing:The International Council of Clean Transportation, 2013.
[43]
IPCC. 2006IPCC Guidelines for national greenhouse gas inventory[R]. Japan:IGES, 2006.
[44]
国家发改委,建设部.建设项目经济评价方法与参数[M]. 北京:中国计划出版社, 2006. National Development and Reform Commission, Ministry of Construction. Economic evaluation methods and parameters of construction projects[M] Beijing:China Planning Press, 2006.
[45]
Bandel W, Fraidl G, Kapus P, et al. The Turbocharged GDI Engine:boosted synergies for high fuel economy plus ultra-low emission[C]//SAE 2006World Congress & Exhibition, 2006.
[46]
赛迪顾问.2018中国新能源公交车城市推广研究报告[R]. 北京:中国电子信息产业发展研究院, 2018. CCID Consultants. 2018China new energy bus city promotion research report[R]. Beijing:China Electronic Information Industry Development Research Institute, 2018.
[47]
中国工业新闻网.中国摩托车行业十大关键词[EB/OL]. http://www.cinn.cn/qzpd/202101/t20210122_237918.html2021-01-22/2021-02-08. China Industry News. Ten key words in China's motorcycle industry[EB/OL]. http://www.cinn.cn/qzpd/202101/t20210122_237918.html 2021-01-22/2021-02-08.
[48]
United States Department of Transport. 2016National transportation statistics[R]. 2016. http://www.transtats.bts.gov/Data_Elements.aspx? Data=3.
[49]
杨冠淳.关于中国远期运输需求和交通业能源消费的思考[EB/OL]. www.simplewayrm.com/node/1292014-05-07/2020-01-20. Yang Guanchun. Thinking about China's long-term transportation demand and transportation energy consumption[EB/OL]. www. simplewayrm.com/node/129 2014-05-07/2020-01-20.
[50]
新华社.国务院办公厅印发《关于加快发展流通促进商业消费的意见》[EB/OD]. http://www.gov.cn/xinwen/2019-08/27/content_5425015.htm2019-08-27/2021-04-02. Xinhua News Agency. the General Office of the State Council issued the opinions on accelerating the development of circulation and promoting commercial consumption[EB/OD]. http://www.gov.cn/xinwen/2019-08/27/content_5425015.htm2019-08-27/2021-04-02.
[50]
[51]
Pan X, Wang H, Wang L, et al. Decarbonization of China's transportation sector:in light of national mitigation toward the Paris Agreement goals[J]. Energy, 2018,155:853-864.
[52]
Wang H L, Ou X M, Zhang X L. Mode, technology, energy consumption and resulting CO2emissions in China's transport sector up to 2050[J]. Energy Policy, 2017,109:719-733.
[53]
Zhang H, Chen W, Huang W. TIMES modelling of transport sector in China and USA:comparisons from a decarbonization perspective[J]. Applied Energy, 2016,162:1505-1514.
[54]
汪 鸣.中国轨道交通未来发展趋势[J]. 现代城市轨道交通, 2019, (7):1-4. Wang M. Future development trend of rail transit in China[J]. Modern Urban Transit, 2019,(7):1-4.
[55]
Davis C S, Diegel W S. Transportation energy data book[R]. Knoxville:Oak Ridge National Laboratory, 2006.
[56]
刘昭然,诸立超.我国货运需求发展趋势分析[J].交通企业管理, 2018,33(1):1-4. Liu Z R, Zhu L C. Analysis on the development trend of China's freight demand[J]. Transportation Enterprise Management, 2018, 33(1):1-4.
[57]
Huo H, Wang M. Modeling future vehicle sales and stock in China. Energy Policy 2012,43:17-29.
[58]
IEA. Energy technology perspectives 2015[R]. Paris:IEA, 2016.
[59]
胡 瑞,李 晶,黄志辉,等.2018~2030年摩托车产销量及保有量预测分析[J]. 小型内燃机与车辆技术, 2019.48(4):74-81. Hu R, Li J, Huang Z H, et al. The forecasting analysis of motorcycle retention, production and sales number from 2018to 2030[J]. Small Internal Combustion Engine and Vehicle Technique, 2019.48(4):74-81.
[60]
刘连义,刘思峰,吴利丰.基于离散时间灰色幂模型的新能源汽车销售量预测[J/OL]. 中国管理科学, https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2567. Liu L Y, Liu S F, Wu L F. New energy vehicle sales forecast based on discrete time grey power model[J/OL]. Chinese Journal of Management Science, https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2567.
[61]
产业信息网.2020年中国电动摩托车产业现状[EB/OL]. https://www.chyxx.com/industry/202101/922847.html2021-01-13/2021-09-08. Industrial information network. Current situation of China's electric motorcycle industry in 2020[EB/OL]. https://www.chyxx.com/industry/202101/922847.html2021-01-13/2021-09-08.
[62]
能源与交通创新中心.中国传统燃油车退出时间表研究[R]. 北京:能源与交通创新中心, 2019. iCET. Study on the exit schedule of Chinese traditional fuel vehicles[R]. Beijing:iCET, 2019.
[63]
项目综合报告编写组.中国长期低碳发展战略与转型路径研究综合报告[J]. 中国人口、资源与环境经济学, 2020,30(11):1-25. Project comprehensive report preparation group. Comprehensive report on China's long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020,30(11):1-25.
[64]
伊文婧,朱跃中,田智宇.我国交通运输部门重塑能源的潜力路径和实施效果[J]. 中国能源, 2017,39(1):32-35. Yi W J, Zhu Y Z, Tian Z Y. Potential path and implementation effect of reshaping energy in China's transportation sector[J]. Energy of China, 2017,39(1):32-35.
[65]
中国新闻网.中国2060年实现碳中和要实现长期深度脱碳转型路径[EB/OL]. https://baijiahao.baidu.com/s?id=1680326616952414825&wfr=spider&for=pc2020-10-12/2021-09-06. China News Network. China's realization of carbon-neutralization in 2060means the realization of long-term and deep decarbonization transformation path[EB/OL]. https://baijiahao.baidu.com/s?id=1680326616952414825&wfr=spider&for=pc2020-10-12/2021-09-06.