中国环境科学
 
 
中国环境科学  2023, Vol. 43 Issue (9): 4596-4605    DOI:
水污染与控制 最新目录| 下期目录| 过刊浏览| 高级检索 |
磁性生物炭吸附水中甲基橙的作用机制——基于密度泛函理论与实验研究
王诗生1,2, 张梦梦1, 盛广宏1,2, 田勇攀3, 刘轶鋆1,2, 章慧娟1,2, 刘永兴1
1. 安徽工业大学能源与环境学院, 安徽 马鞍山 243002;
2. 安徽工业大学生物膜法水质净化及利用技术教育部工程研究中心, 安徽 马鞍山 243032;
3. 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
Adsorption mechanism of methyl orange by using the magnetic biochar -Based on density functional theory and batch adsorption experiment study
WANG Shi-sheng1,2, ZHANG Meng-meng1, SHENG Guang-hong1,2, TIAN Yong-pan3, LIU Yi-yun1,2, ZHANG Hui-juan1,2, LIU Yong-xin1
1. School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China;
2. Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China;
3. School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China

全文: PDF (2406 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 以磁性生物炭(Fe3O4@C-NH2)为吸附剂,甲基橙(MO)为目标污染物,考察了浓度、温度和pH对吸附性能的影响,通过光谱学与密度泛函理论研究MO的去除机制.结果表明,吸附反应符合准二级动力学及Freundlich模型,是自发吸热且熵增的过程.平衡吸附量随着pH(3~10)升高而降低.光谱学分析结果表明,吸附作用力包括氢键、π-π堆积、π-π电子供体-受体(EDA)和静电力.静电势分布与前线轨道理论分析可知,羧基结构与MO分子间的结合能(Eads)与能隙(Egap)分别为-139.08kJ/mol, 3.07eV,吸附能力高于羟基结构(Eads=-94.47kJ/mol, Egap=3.16eV)、氨基结构(Eads=-76.10kJ/mol, Egap=3.17eV)和芳香环结构(Eads=-41.99kJ/mol, Egap=3.18eV).基于赫什菲尔德划分的独立梯度模型-AIM拓扑分析图(IGMH-AIM)结果表明,吸附过程存在疏水作用,且氢键和π-π EDA为主要作用力.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王诗生
张梦梦
盛广宏
田勇攀
刘轶鋆
章慧娟
刘永兴
关键词 密度泛函理论磁性生物炭吸附机理甲基橙    
Abstract:Magnetic biochar (Fe3O4@C-NH2) was used as the adsorbent for removal of Methyl Orange (MO) in this study. The effects of concentration, temperature and pH on the adsorption performance were investigated, and then the Spectroscopic analysis and density functional theory were used to reveal the adsorption mechanism. The results demonstrated that the adsorption kinetics followed the pseudo-second-order model and the Freundlich model, and the process owned the characteristics of spontaneity, endothermic and entropy increasing. The equilibrium adsorption capacity decreased with the increment of pH (3~10). Spectroscopic analysis showed that the adsorption forces contain the hydrogen bonding, π-π bond accumulation, π-π electron donor-acceptor (EDA) and electrostatic interaction. According to the analysis of electrostatic potential and frontier orbit, the binding energy and energy gap of carboxyl group were Eads = -139.08kJ/mol, Egap = 3.07eV respectively, which were higher than those of hydroxyl group (Eads = -94.47kJ/mol, Egap = 3.16eV), amino group (Eads = -76.10kJ/mol, Egap = 3.17eV) and aromatic ring (Eads = -41.99kJ/mol, Egap = 3.18eV). It was found that the hydrophobic action existed in the adsorption process; besides, the hydrogen bond and π-π EDA were the main forces in the process based on the results integrating the independent gradient model and Hirshfeld partition and Atoms in molecules (IGMH-AIM).
Key wordsdensity functional theory    magnetic biochar    adsorption mechanism    methyl orange   
收稿日期: 2023-02-11     
PACS: X703  
基金资助:生物膜法水质净化及利用技术教育部工程研究中心开放基金资助项目(BWPU2021KF07,BWPU2021ZY02);2022年安徽工业大学省级大学生创新创业训练项目(S202210360415)
通讯作者: 王诗生,副教授,ahutsswang@163.com     E-mail: ahutsswang@163.com
作者简介: 王诗生(1975-),男,安徽巢湖人,副教授,博士,主要从事环境功能材料的设计、制备和应用;污水处理与资源化.发表论文40余篇.ahutsswang@163.com
引用本文:   
王诗生, 张梦梦, 盛广宏, 田勇攀, 刘轶鋆, 章慧娟, 刘永兴. 磁性生物炭吸附水中甲基橙的作用机制——基于密度泛函理论与实验研究[J]. 中国环境科学, 2023, 43(9): 4596-4605. WANG Shi-sheng, ZHANG Meng-meng, SHENG Guang-hong, TIAN Yong-pan, LIU Yi-yun, ZHANG Hui-juan, LIU Yong-xin. Adsorption mechanism of methyl orange by using the magnetic biochar -Based on density functional theory and batch adsorption experiment study. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(9): 4596-4605.
链接本文:  
http://www.zghjkx.com.cn/CN/      或     http://www.zghjkx.com.cn/CN/Y2023/V43/I9/4596
中国环境科学
友情链接: 中国科学技术协会 中国环境科学学会 中国知网 万方数据
版权所有 © 2010 《中国环境科学》编辑部  地址:北京市海淀区红联南村54号(100082)  电话、传真:(010)62215145  
E-mail:zghjkx1981@126.com;zghjkx1981@chinacses.org;zghjkx1981@188.com
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn