The Pt-Sn/Al2O3 honeycomb catalysts were prepared by incipient wetness sequence impregnation procedure (the content of Pt is only 0.06wt%), which were characterized by XRD, TEM and so on. The performances of catalysts were evaluated by selecting four representative C6 hydrocarbons (benzene, cyclohexanone, cyclohexane and n-hexane). The optimal Pt/Sn ratio was 3/1 (w/w) in evaluating the catalytic activities, where the T90 of four C6 hydrocarbons decreased by about 20℃ compared with the Pt catalyst. Sn improved dispersion of Pt by dividing Pt into smaller clusters. The conversion of cyclohexane over Pt/Sn=3/1catalyst displayed no significant change after 720h of continuous run, in that Sn inhibited size growth effectively and Pt3Sn alloy structure weakened the adsorption of C6 hydrocarbons to reduce surface coke deposition.
王雪松,李金龙.人为源排放VOC对北京地区臭氧生成的贡献[J]. 中国环境科学, 2002,22(6):22-26. Wang X S, Li J L. The contribution of anthropogenic hydrocarbons to ozone formation in Beijing areas[J]. China Environmental Science, 2002,22(6):22-26
[2]
陈小方,张嘉妮,张伟霞,等.化工园区挥发性有机物排放清单及其环境影响[J]. 中国环境科学, 2017,37(11):4062-4071. Chen X F, Zhang J N, Zhang W X, et al. VOCs emission inventory of a chemical industry park and its influence on atmospheric[J]. ChinaEnvironmental Science, 2017,37(11):4062-4071.
[3]
张悦,刘志英,李溪,等.添加铈对Cu-Co-O催化剂催化燃烧VOCs性能影响[J]. 中国环境科学, 2017,37(6):2087-2091. Zhang Y, Liu Z Y, Li X, et al. Effect of Ce on the activity of Cu-Co-O catalyst in catalytic combustion of VOCs[J]. China Environmental Science, 2017,37(6):2087-2091.
[4]
He C, Cheng J, Zhang X, Douthwaite M, et al. Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019,119(7):4471-4568.
[5]
Kucharczyk B, Tylus W, Okal J, et al. The Pt-NiO catalysts over the metallic monolithic support for oxidation of carbon monoxide and hexane[J]. Chemical Engineering Journal, 2017,309:288-297.
[6]
Niaei A, Salari D, Aghazadeh F, et al. Catalytic oxidation of 2-Propanol over (Cr, Mn, Fe)-Pt/gamma-Al2O3 bimetallic catalysts and modeling of experimental results by artificial neural networks[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2010,45(4):454-463.
[7]
任思达,梁文俊,王昭艺,等.Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 2019,39(7):2774-2780. Ren S D, Liang W J, Wang Z Y, et al. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 2019,39(7):2774-2780.
[8]
梁文俊,石秀娟,邓葳,等.Pd-Ce/Al2O3催化剂用于低浓度甲烷催化燃烧[J]. 中国环境科学, 2017,37(7):2520-2526. Liang W J, Shi X J, DengW, et al. Low concentrationmethane combustion over bimetallicPd-Ce/Al2O3 catalysts[J]. China Environmental Science, 2017,37(7):2520-2526.
[9]
Kaylor N, Davis R J. Propane dehydrogenation over supported Pt-Sn nanoparticles[J]. Journal of Catalysis, 2018,367:181-193.
[10]
Sun L, Chai Y, Dai W, et al. Oxidative dehydrogenation of propane over Pt-Sn/Si-beta catalysts:key role of Pt-Sn interaction[J]. Catalysis Science & Technology, 2018,8(12):3044-3051.
[11]
Han W, Zhang P, Tang Z, et al. Low temperature CO oxidation over Pd-Ce catalysts supported on ZSM-5zeolites[J]. Process Safety and Environmental Protection, 2014,92(6):822-827.
[12]
Michalak W D, Krier J M, Alayoglu S, et al. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions[J]. Journal of Catalysis, 2014,312:17-25.
[13]
Santhosh Kumar M, Chen D, Holmen A, etal. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15:Effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catalysis Today, 2009, 142(1/2):17-23.
[14]
Barias O A, Holmen A, Blekkan E A. Propane dehydrogenation over supported Pt and Pt-Sn catalysts:Catalyst preparation, characterization, and activity measurements[J]. Journal of Catalysis, 1996,158(1):1-12.
[15]
Delbecq F. Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts:a density functional study of molecular adsorption[J]. Journal of Catalysis, 2003,220(1):115-126.
[16]
Valcarcel A, Clotet A, Ricart J M, Illas F. Comparative theoretical study of the structure and bonding of propyne on thePt(111) and Pd(111) surfaces[J]. Chemical Physics, 2005,309(1):33-39.
[17]
黄海凤,张细雄,豆闶,等.氧化物载体对Ni-V催化剂催化燃烧二氯甲烷的影响[J]. 中国环境科学, 2016,36(11):3273-3279. Huang H F, Zhang X X, Dou K, et al. Influence of oxide support to the Ni-V catalysts in the catalytic oxidation of dichloromethane[J]. China Environmental Science, 2016,36(11):3273-3279.
[18]
Men Y, Su J, Wang X, et al. NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Chinese Chemical Letters, 2019,30(3):634-637.
[19]
Vu B K, Song M B, Ahn I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A:General, 2011,400(1/2):25-33.
[20]
Lopez-Suarez F E, Bueno-Lopez A, Eguiluz K I B, etal. Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells:Effect of the precursor addition order[J]. Journal of Power Sources, 2014,268:225-232.
[21]
Deng T Y, Liu H C. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts[J]. Green Chemistry, 2013,15(1):116-124.
[22]
Iglesias-Juez A, Beale A M, Maaijen K, et al. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and Pt-Sn propane dehydrogenation catalysts under industrial reaction conditions[J]. Journal of Catalysis, 2010,276(2):268-279.
[23]
Han F, Wang X M, Lian J, et al. The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction[J]. Carbon, 2012,50(15):5498-5504.
[24]
Jbir I, Couble J, Khaddar-Zine S, et al. Individual heat of adsorption of adsorbed CO species on palladium and Pd-Sn nanoparticles supported on Al2O3 by using temperature-programmed adsorption equilibrium methods[J]. Acs Catalysis, 2016,6(4):2545-2558.
[25]
Saeys M, Reyniers M F, Marin G B, et al. Density functional study of benzene adsorption on Pt(111)[J]. Journal of Physical Chemistry B, 2002,106(30):7489-7498.
[26]
Morin C, Simon D, Sautet P. Density-functional study of the adsorption and vibration spectra of benzene molecules on Pt(111)[J]. Journal of Physical Chemistry B, 2003,107(13):2995-3002.
[27]
Xu C, Tsai Y L, Koel B E. Adorsption of cyclohexane and benzene on ordered Sn/Pt(111) Surface Alloys[J]. Journal of Physical Chemistry, 1994,98(2):585-593.
[28]
Kim J, Welch L A, Olivas A, et al. Adsorption and decomposition of cyclohexanone (C6H10O) on Pt(111) and the (2×2) and (√3×√3) R30°-Sn/Pt(111) surface alloys[J]. Langmuir, 2010,26(21):16401-16411.
[29]
Tsuda M, Diño W A, Watanabe S, et al. Cyclohexane dehydrogenation catalyst design based on spin polarization effects[J]. Journal of Physics:Condensed Matter, 2004,16(48):S5721-S5724.
[30]
Loffreda D, Michel C, Delbecq F, et al. Tuning catalytic reactivity on metal surfaces:Insights from DFT[J]. Journal of Catalysis, 2013, 308:374-385.