Disposal methods and development tendencies of waste biodegradable plastics
HAN Shi-lei1,2, ZHANG Fu-Shen1,2
1. Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Biodegradable plastics have been widely applied in many fields in recent years. Waste biodegradable plastics (WBP) products may easily cause environmental pollution, thus the disposal and resource utilization of WBP are important guarantees for large-scale application of this type of plastics. This paper summarized the main disposal approaches of WBP, especially focused on mechanical recycling, chemical recycling, biological treatment, landfill, incineration and upgrade utilization. Furthermore, the problems encountered in the treatment process of WBP were systematically analyzed, and the future development trend of WBP recycling was predicted. The main purpose is, to provide guidance for the green and efficient treatment of WBP.
[1] 侯冠一,翁云宣,刁晓倩,等.生物降解塑料产业现状与未来发展[J]. 中国材料进展, 2022,41(1):52-67. Hou G Y, Weng Y X, Diao X Q, et al. The current development situation and future development of biodegradable plastic industy[J]. Materials China, 2022,41(1):52-67. [2] Patel G B, Singh N L, Singh F. Modification of chitosan-based biodegradable polymer by irradiation with MeV ions for electrolyte applications[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2017,225:150-159. [3] Hou G, Weng Y, Diao X, et al. The current development situation and future development of biodegradable plastic industry[J]. Materials China, 2022,41(1):52-67. [4] Proceedings of the international conference on sustainable design and manufacturing[C]. Split: Springer, 2021. [5] Arman Alim A A, Mohammad Shirajuddin S S, Anuar F H. A review of nonbiodegradable and biodegradable composites for food packaging application[J]. Journal of Chemistry, 2022,197:177-198. [6] Coltelli M-B, Danti S, DE Clerck K, et al. Pullulan for advanced sustainable body-and skin-contact applications[J]. Journal of Functional Biomaterials, 2020,11(1):20. [7] Mo A, Zhang Y, Gao W, et al. Environmental fate and impacts of biodegradable plastics in agricultural soil ecosystems[J]. Applied Soil Ecology, 2023,181:104667. [8] Kalia V C, Patel S K S, Shanmugam R, et al. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications[J]. Bioresource Technology, 2021,326:124737. [9] Čolnik M, Knez-hrnčič M, Škerget M, et al. Biodegradable polymers, current trends of research and their applications, a review[J]. Chemical Industry, 2020,26(4):401-418. [10] Diao X, Weng Y, Song X, et al. Current development situation of biodegradable plastic industry In China and abroad[J]. China Plastics, 2020,34(5):123-135. [11] Rai P, Mehrotra S, Priya S, et al. Recent advances in the sustainable design and applications of biodegradable polymers[J]. Bioresource Technology, 2021,325:124739. [12] Meghana M C, Nandhini C, Benny L, et al. A road map on synthetic strategies and applications of biodegradable polymers[J]. Polymer Bulletin, 2022:1-50. [13] Mtibe A, Motloung M P, Bandyopadhyay J, et al. Synthetic biopolymers and their composites: Advantages and limitations—an overview[J]. Macromolecular Rapid Communications, 2021,42(15): 2100130. [14] Sun C, Wei S, Tan H, et al. Progress in upcycling polylactic acid waste as an alternative carbon source: A review[J]. 2022,446(1):136881. [15] Alaerts L, Augustinus M, Van Acker K. Impact of bio-based plastics on current recycling of plastics[J]. Sustainability, 2018,10(5):1487. [16] Gioia C, Giacobazzi G, Vannini M, et al. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling GT1[J]. Chemsuschem, 2021,14(19):4167-4175. [17] 刁晓倩,翁云宣,付烨,等.生物降解塑料应用及性能评价方法综述[J]. 中国塑料, 2021,35(8):152-161. Diao X Q, Weng Y X, Fu Y, et al. Review of applications and performance evaluation methods of biodegradable plastics[J]. China Plastics 2021,35(8):152-161. [18] Bano K, Kuddus M, R Zaheer M, et al. Microbial enzymatic degradation of biodegradable plastics[J]. Current pharmaceutical biotechnology, 2017,18(5):429-440. [19] Vu D H, Åkesson D, Taherzadeh M J, et al. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview[J]. Bioresource technology, 2020,298:122393. [20] Saalah S, Saallah S, Rajin M, et al. Management of biodegradable plastic waste: A review[J]. Advances in Waste Processing Technology, 2020:127-143. [21] Mtibe A, Motloung M P, Bandyopadhyay J, et al. Synthetic biopolymers and their composites: Advantages and limitations—An overview[J]. 2021,42(15):2100130. [22] 王华林,盛敏刚,史铁钧,等. PLA及PLA复合材料降解性能研究进展[J]. 高分子材料科学与工程, 2004,(6):20-23. Wang H L, Sheng M G, Shi T J, et al. Advance in the studies on degradation of PLA and PLA composites[J]. Polymer Materials Science & Engineering, 2021,42(15):2100130. [23] Tan G Y A, Chen C L, Li L, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review[J]. Polymers, 2014,6(3): 706-754. [24] Aversa C, Barletta M, Cappiello G, et al. Compatibilization strategies and analysis of morphological features of poly (butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review[J]. European Polymer Journal, 2022,173:111304. [25] Hu X, Mao H, Su T, et al. Advances in biodegradation of polybutylene succinate (PBS)[J]. Journal of Mirobiology, 2016,36(4):84-89. [26] Tan B, Sun Z, Ji Y. A review in synthesis and modification of poly(glycolic acid)[J]. China Plastics, 2021,35(10):137-146. [27] Kumar R, Sadeghi K, Jang J, et al. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review[J]. Science of the Total Environment, 2023,882:163446. [28] Vu D H, Åkesson D, Taherzadeh M J, et al. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview[J]. 2020,298:122393. [29] Leibfarth F A, Moreno N, Hawker A P, et al. Transforming polylactide into value-added materials[J]. 2012,50(23):4814-4822. [30] Wojnowska-Baryła I, Kulikowska D, Bernat K. Effect of bio-based products on waste management[J]. Sustainability, 2020,12(5):2088. [31] Beltrán F, Barrio I, Lorenzo V, et al. Valorization of poly (lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer[J]. Waste Management, 2019,37(2):135-141. [32] Kawashima N, Yagi T, Kojima K, et al. How do bioplastics and fossil-based plastics play in a circular economy?[J]. Macromolecular materials, 2019,304(9):1900383. [33] 吴仲伟,刘志峰,刘光复,等.基于机械物理法的热固性塑料粉碎及再生机理研究[J]. 中国机械工程, 2012,23(14):1639-1644. Wu Z W, Liu Z F, Liu G F, et al. Research on crushing and regeneration mechanism of thermoseting plastic based on mechanical and physical method[J]. China Mechanical Engineering, 2012,23(14): 1639-1644. [34] Schyns Z O, Shaver M P J M R C. Mechanical recycling of packaging plastics: A review[J]. 2021,42(3):2000415. [35] Briassoulis D, Pikasi A, Hiskakis M. Recirculation potential of post-consumer/industrial bio-based plastics through mechanical recycling-Techno-economic sustainability criteria and indicators[J]. Polymer Degradation, 2021,183:109217. [36] Al-salem S, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review[J]. Waste management, 2009, 29(10):2625-2643. [37] Rivas L F, Casarin S A, Nepomuceno N C, et al. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies[J]. Polímeros, 2017,27:122-128. [38] Aldas M, Pavon C, DE LA ROSA-RAMIREZ H, et al. The impact of biodegradable plastics in the properties of recycled polyethylene terephthalate[J]. Journal of Polymers, 2021,29(8):2686-2700. [39] Vu D H, Åkesson D, Taherzadeh M J, et al. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview[J]. Bioresource technology, 2020,298:122393. [40] Marinho V A, Pereira C A, Vitorino M B, et al. Degradation and recovery in poly (butylene adipate-co-terephthalate)/thermoplastic starch blends[J]. Polymer Testing, 2017,58:166-172. [41] Beltrán F R, Gaspar G, Dadras Chomachayi M, et al. Influence of addition of organic fillers on the properties of mechanically recycled PLA[J]. Environmental Science Pollution Research, 2021,28(19): 24291-24304. [42] Beltrán F R, Infante C, De La Orden M U, et al. Mechanical recycling of poly (lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic[J]. Journal of Cleaner Production, 2019,219:46-56. [43] Rujnić-Sokele M, Pilipović A, Research. Challenges and opportunities of biodegradable plastics: A mini review[J]. Waste Management, 2017,35(2):132-140. [44] Chen X Z, Kroell N, Li K, et al. Influences of bioplastic polylactic acid on near-infrared-based sorting of conventional plastic[J]. Waste Management & Research, 2021,39(9):1210-1213. [45] Geng X M, Song N, Zhao Y C, et al. Waste plastic resource recovery from landfilled refuse: A novel waterless cleaning method and its cost-benefit analysis[J]. Journal of Environmental Management, 2022,306:114462. [46] Soroudi A, Jakubowicz I J E P J. Recycling of bioplastics, their blends and biocomposites: A review[J]. 2013,49(10):2839-2358. [47] Siddiqui M N, Redhwi H H, Al-Arfaj A A, et al. Chemical recycling of pet in the presence of the bio-based polymers, pla, phb and pef: A review[J]. Sustainability, 2021,13(19):10528. [48] Sánchez A C, Collinson S R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions[J]. European Polymer Journal, 2011,47(10):1970-1976. [49] 黄婕,陈磊,齐文杰,等.聚酯在超临界甲醇中的降解特性[J]. 功能高分子学报, 2007,7(1):53-59. Huang J, Chen L, Qi W J, et al. Degradation behaviors of polyesters in supercritical meyhanol[J]. Journal of Functional Polymers, 2007,7(1):53-59. [50] Román-Ramírez L A, Mckeown P, Jones M D, et al. Poly (lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn (II) complex[J]. ACS Catalysis, 2018,9(1):409-416. [51] Gioia C, Giacobazzi G, Vannini M, et al. End of life of biodegradable plastics: composting versus Re/upcycling[J]. ChemSusChem, 2021, 14(19):4167-4175. [52] Leibfarth F A, Moreno N, Hawker A P, et al. Transforming polylactide into value-added materials[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012,50(23):4814-4822. [53] Liu H, Song X, Liu F, et al. Ferric chloride as an efficient and reusable catalyst for methanolysis of poly (lactic acid) waste[J]. Journal of Polymer Research, 2015,22(7):1-7. [54] Xie S Q, Sun Z R, Liu T, et al. Beyond biodegradation: Chemical upcycling of poly(lactic acid) plastic waste to methyl lactate catalyzed by quaternary ammonium fluoride[J]. Journal of Catalysis, 2021, 402:61-71. [55] Nim B, Opaprakasit P, Spectroscopy B. Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes[J]. Spectrochimica Acta Part A: Molecular, 2021, 255:119684. [56] Lamberti F M, Ingram A, Wood J. Synergistic dual catalytic system and kinetics for the alcoholysis of poly (lactic acid)[J]. Processes, 2021,9(6):921. [57] Okajima I, Watanabe K, Haramiishi S, et al. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids[J]. The Journal of Supercritical Fluids, 2017,119:44-51. [58] Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review[J]. Agronomy for Sustainable Development, 2013,33(2):501-529. [59] 金琰,蔡凡凡,王立功,等.生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022,38(5):1784-1808. Jin Y, Cai Y Y, Wang L G, et al. Advance in the degradation of biodegradable plastics in different environments[J]. Chinese Journal of Biotechnology, 2022,38(5):1784-1808. [60] Tobias H, Carolin V L, Johanna K, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie, 2018,58(1):50-62. [61] Yagihashi M, Funazukuri T, Research E C. Recovery of L-lactic acid from poly (L-lactic acid) under hydrothermal conditions of dilute aqueous sodium hydroxide solution[J]. Industrial, 2010,49(3):1247-1251. [62] Lai J, Huang H, Lin M, et al. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics[J]. Frontiers in microbiology, 2022,13:1113705. [63] Zhang J, Zhu J, Hua Z, et al. Specific Ion Effects on the Enzymatic Degradation of Polyester Films[J]. Chinese Journal of Polymer Science, 2023,41(4):476-482. [64] Bi S, Tan B, Soule J L, et al. Enzymatic degradation of poly (butylene succinate-co-hexamethylene succinate)[J]. Polymer Degradation, 2018,155:9-14. [65] Feghali E, Tauk L, Ortiz P, et al. Catalytic chemical recycling of biodegradable polyesters[J]. Polymer Degradation Stability, 2020, 179:109241. [66] Sukkhum S, Tokuyama S, Kitpreechavanich V, et al. Poly (L-lactide)- degrading enzyme production by Actinomadura keratinilytica T16-1in 3L airlift bioreactor and its degradation ability for biological recycle[J]. Journal of microbiology, 2012,22(1):92-99. [67] Wei X F, Capezza A J, CUI Y, et al. Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis[J]. Water Research, 2022,211:118068. [68] Feghali E, Tauk L, Ortiz P, et al. Catalytic chemical recycling of biodegradable polyesters[J]. Polymer Degradation, 2020,179:109241. [69] Feghali E, Cantat T. Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates[J]. ChemSusChem, 2015,8(6):980-984. [70] Fernandes A C. Reductive depolymerization of plastic waste catalyzed by Zn (OAc)2·2H2O[J]. ChemSusChem, 2021,14(19):4228-4233. [71] Alberti C, Eckelt S, Enthaler S J C. Ruthenium-Catalyzed Hydrogenative Depolymerization of End-of-Life Poly (bisphenol A carbonate)[J]. Chemistry Select, 2019,4(42):12268-12271. [72] Siddiqui M N, Redhwi H H, Al-arfaj A A, et al. Chemical recycling of pet in the presence of the bio-based polymers, pla, phb and pef: A review[J]. Sustainability, 2021,13(19):10528. [73] Lamberti F M, Roman-Ramirez L A, WOOD J. Recycling of Bioplastics: Routes and Benefits[J]. Journal of Polymers and the Environment, 2020,28(10):2551-2571. [74] Al-Sabagh A M, Yehia F Z, Eissa A-M M, et al. Glycolysis of poly (ethylene terephthalate) catalyzed by the Lewis base ionic liquid[Bmim][OAc][J]. Industrial, 2014,53(48):18443-18451. [75] Ghasemi M H, Neekzad N, Ajdari F B, et al. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management[J]. Environmental Science and Pollution Research, 2021,28:43074-43101. [76] De Castro A M, Carniel A. A novel process for poly (ethylene terephthalate) depolymerization via enzyme-catalyzed glycolysis[J]. Biochemical Engineering Journal, 2017,124:64-68. [77] Zheng Y, Yuan Q, Luo H, et al. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources[J]. Bioengineered, 2018,9(1):209-213. [78] Chandrasekaran S R, Sharma B K. Fuel properties associated with catalytic conversion of plastics[M]. Plastics to Energy. Elsevier. 2019:173-220. [79] Razza F, Innocenti F D. Bioplastics from renewable resources: the benefits of biodegradability[J]. Asia-Pacific Journal of Chemical Engineering, 2012,7:S301-S309. [80] Al-Itry R, Lamnawar K, Maazouz A J P D, et al. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012,97(10):1898-1914. [81] 金琰,蔡凡凡,王立功,等.生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022,38(5):1784-808. Jin Y, Cai Y Y, Wang L G, et al. Advance in the degradation of biodegradable plastics in different environments[J]. Chinese Journal of Biotechnology, 2022,38(5):1784-1808. [82] Havstad M R. Biodegradable plastics[M]. Croatia: Plastic waste and recycling, 2020:97-129. [83] Mergaert J, Schirmer A, Hauben L, et al. Isolation and identification of poly (3-hydroxyvalerate)-degrading strains of Pseudomonas lemoignei[J]. MIicrobiology Society, 1996,46(3):769-773. [84] Satti S M, Abbasi A M, Marsh T L, et al. Statistical optimization of lipase production from Sphingobacterium sp. strain S2 and evaluation of enzymatic depolymerization of poly (lactic acid) at mesophilic temperature[J]. Polymer Degradation and Stability, 2019,160:1-13. [85] Abou-Zeid D-M, Müller R-J, Deckwer W-D J J O B. Degradation of natural and synthetic polyesters under anaerobic conditions[J]. Journal of Biotechnology, 2001,86(2):113-126. [86] 聂榕,彭伟,吕凡,等.生物可降解塑料厌氧消化降解研究进展[J]. 环境卫生工程, 2023,31(2):46-56. Nie R, Peng W, Lv F, et al. Research progress on degradation of biodegradable plastics during anaerobic digestion.[J]. Environment Sanitation Engineering, 2023,31(2):46-56. [87] Cazaudehore G, Guyoneaud R, Evon P, et al. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges[J]. Chemistry Select, 2022:107916. [88] García-Depraect O, Bordel S, Lebrero R, et al. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products[J]. Biotechnology Advances, 2021,53:107772. [89] Luyt A S. Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation?[J]. Plastics to Energy, 2019:403-423. [90] Emadian S M, Onay T T, Demirel B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017,59:526-536. [91] Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience, 2008,8(1):14-24. [92] Satti S M, Abbasi A M, Salahuddin, et al. Statistical optimization of lipase production from Sphingobacterium sp. strain S2 and evaluation of enzymatic depolymerization of Poly(lactic acid) at mesophilic temperature[J]. Polymer Degradation and Stability, 2019,160:1-13. [93] Sakai K, Kawano H, Iwami A, et al. Isolation of a thermophilic poly-L-lactide degrading bacterium from compost and its enzymatic characterization[J]. Journal of Bioscience and Bioengineering, 2001,92(3):298-300. [94] Hu X P, Thumarat U, Zhang X, et al. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119[J]. Applied Microbiology and Biotechnology, 2010,87(2):771-779. [95] Akbar S, Hasan F, Nadhman A, et al. Production and Purification of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Degrading Enzyme from Streptomyces sp AF-111[J]. Journal of Polymers and the Environment, 2013,21(4):1109-1116. [96] Sintim H Y, Bary A I, Hayes D G, et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils[J]. Science of the total environment, 2020,727:138668. [97] Markowicz F, Szymańska-Pulikowska A. Analysis of the possibility of environmental pollution by composted biodegradable and oxo-biodegradable plastics[J]. Geosciences, 2019,9(11):460. [98] Anstey A, Muniyasamy S, Reddy M M, et al. Processability and biodegradability evaluation of composites from poly (butylene succinate)(PBS) bioplastic and biofuel co-products from Ontario[J]. Journal of Polymers, 2014,22(2):209-218. [99] Sarasa J, Gracia J M, Javierre C. Study of the biodisintegration of a bioplastic material waste[J]. Bioresource technology, 2009,100(15): 3764-3768. [100] Siracusa V. Microbial degradation of synthetic biopolymers waste[J]. Polymers, 2019,11(6):1066. [101] Kooduvalli K, Vaidya U K, Ozcan S. Life cycle assessment of compostable coffee pods: A US university based case study[J]. Scientific Reports, 2020,10(1):1-24. [102] Weng Y X, Wang Y, Wang X L, et al. Biodegradation behavior of PHBV films in a pilot-scale composting condition[J]. Polymer Testing, 2010,29(5):579-587. [103] Folino A, Karageorgiou A, Calabrò P S, et al. Biodegradation of wasted bioplastics in natural and industrial environments: A review[J]. Sustainability, 2020,12(15):6030. [104] Tokiwa Y, Calabia B P, Ugwu C U, et al. Biodegradability of plastics[J]. Molecular Sciences, 2009,10(9):3722-3742. [105] Cazaudehore G, Guyoneaud R, Evon P, et al. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges[J]. Biotechnology Advances, 2022,56:107916. [106] Jin Y, Cai F F, Song C, et al. Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics[J]. Science of the Total Environment, 2022,834:155167. [107] Gadaleta G, De Gisi S, Picuno C, et al. The influence of bio-plastics for food packaging on combined anaerobic digestion and composting treatment of organic municipal waste[J]. Waste Management, 2022,144:87-97. [108] Yagi H, Ninomiya F, Funabashi M, et al. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters[J]. Polymer Degradation and Stability, 2014,110:278-283. [109] Abou-Zeid D M, Muller R J, Deckwer W D. Degradation of natural and synthetic polyesters under anaerobic conditions[J]. Journal of Biotechnology, 2001,86(2):113-126. [110] Peng W, Wang Z J, Shu Y H, et al. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment: Insights on changes of polymer physicochemical properties and the role of microbial and fungal communities[J]. Bioresource Technology, 2022,343:126079. [111] Yagi H, Ninomiya F, Funabashi M, et al. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters[J]. Polymer Degradation and Stability, 2014,110:278-283. [112] Yagi H, Ninomiya F, Funabashi M, et al. Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters[J]. Polymer Degradation and Stability, 2013,98(6):1182-1187. [113] Gadaleta G, De Gisi S, Chong Z K, et al. Degradation of thermoplastic cellulose acetate-based bioplastics by full-scale experimentation of industrial anaerobic digestion and composting[J]. Chemical Engineering Journal, 2023,462:142301. [114] Gadaleta G, De Gisi S, Todaro F, et al. Carbon Footprint and Total Cost Evaluation of Different Bio-Plastics Waste Treatment Strategies[J]. Clean technologies, 2022,4(2):570-583. [115] Kakadellis S, Woods J, Harris Z M. Friend or foe: Stakeholder attitudes towards biodegradable plastic packaging in food waste anaerobic digestion[J]. Resources Conservation and Recycling, 2021,169:105529. [116] Ruggero F, Gori R, Lubello C, et al. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: A review[J]. Waste Management, 2019,37(10):959-975. [117] Song J H, Murphy R J, Narayan R, et al. Biodegradable and compostable alternatives to conventional plastics[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009,364(1526):2127-2139. [118] Dilkes-Hoffman L, Pratt S, Lant P, et al. The role of biodegradable plastic in solving plastic solid waste accumulation. Plastics to Energy[Z]. Australia: Dilkes, 2019. [119] zhang F, Zhao Y, Wang D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production, 2021,282: 124523. [120] Jang M, Yang H, Park S A, et al. Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics[J]. Chemosphere, 2022,303:134946. [121] Zheng J, Suh S. Strategies to reduce the global carbon footprint of plastics[J]. Nature Climate Change, 2019,9(5):374-378. [122] Choi B, Yoo S, Park S I. Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea[J]. Sustainability, 2018,10(7):2369. [123] Abraham A, Park H, Choi O, et al. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production-a review[J]. Bioresource Technology, 2021,322: 124537. [124] Jafari-sales A, Shahniani A, Bagherizadeh Y. Bioplastics and the Environment[J]. Electron J Biol, 2017,13:274-279. [125] Yates M R, Barlow C Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review[J]. Resources, Conservation Recycling, 2013,78:54-66. [126] 吴慧芳,孔火良.垃圾填埋场有机污染物的生物降解机理[J]. 工业安全与环保, 2005,(4):19-21,9. Wu H F, Kong H L. Micobial decomposition mechanism for organic pollutants at solid waste landfills[J]. Industrial Safety and Environmental Protection, 2005,(4):19-21,9. [127] Ishigaki T, Sugano W, Nakanishi A, et al. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors[J]. Chemosphere, 2004,54(3):225-233. [128] Boonmee C, Kositanont C, Leejarkpai T. Degradation behavior of biodegradable plastics in thermophilic landfill soil and wastewater sludge conditions[J]. Environmental Research, Engineering Management, 2022,78(1):57-69. [129] Adamcova D, Vaverkova M D. New Polymer Behavior Under the Landfill Conditions[J]. Waste and Biomass Valorization, 2016,7(6): 1459-1467. [130] Ren X. Biodegradable plastics: a solution or a challenge?[J]. Journal of cleaner Production, 2003,11(1):27-40. [131] Baldasano J M, Gasso S, Perez C. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system[J]. Waste Management, 2003,23(9): 795-806. [132] Chidambarampadmavathy K, Karthikeyan O P, Heimann K. Sustainable bio-plastic production through landfill methane recycling[J]. Renewable & Sustainable Energy Reviews, 2017,71:555-562. [133] Xu B, Chen Y, He J, et al. New insights into the biodegradation of polylactic acid: from degradation to upcycling[J]. Environmental Reviews, 2022,30(1):30-38. [134] Vea E B, Romeo D, Thomsen M J P C. Biowaste valorisation in a future circular bioeconomy[J]. J Procedia Cirp, 2018,69:591-596. [135] Ellis L D, Rorrer N A, Sullivan K P, et al. Chemical and biological catalysis for plastics recycling and upcycling[J]. Nature Catalysis, 2021,4(7):539-556. [136] García-Depraect O, Bordel S, Lebrero R, et al. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products[J]. Biotechnology Advances, 2021,53:107772. [137] Lee S, Lee J, Park Y-K, et al. Simultaneous upcycling of biodegradable plastic and sea shell wastes through thermocatalytic monomer recovery[J]. ACS Sustainable Chemistry, 2022,10(42): 13972-13979. [138] Eang C, Nim B, Sreearunothai P, et al. Chemical upcycling of polylactide (PLA) and its use in fabricating PLA-based super- hydrophobic and oleophilic electrospun nanofibers for oil absorption and oil/water separation[J]. New Journal of Chemistry, 2022,46(31): 14933-14943. [139] Xie S, Sun Z, Liu T, et al. Beyond biodegradation: ethyl lactate catalyzed by quaternary ammonium fluo Chemical upcycling of poly (lactic acid) plastic waste to m ride[J]. Journal of Catalysis, 2021, 402:61-71. [140] Thakur S, Chaudhary J, Sharma B, et al. Sustainability of bioplastics: Opportunities and challenges[J]. Current opinion in Green Sustainable Chemistry and Pharmacy, 2018,13:68-75. [141] Shao L, Chang Y-C, Hao C, et al. A chemical approach for the future of PLA upcycling: from plastic wastes to new 3D printing materials[J]. Green Chemistry, 2022,24(22):8716-8724. [142] Pantelic B, Ponjavic M, Jankovic V, et al. Upcycling biodegradable PVA/starch film to a bacterial biopigment and biopolymer[J]. Polymers, 2021,13(21):3692. [143] Abu-thabit N Y, Pérez-rivero C, Uwaezuoke O J, et al. From waste to wealth: Upcycling of plastic and lignocellulosic wastes to PHAs[J]. Journal of Chemical Technology, 2022,97(12):3217-3240. [144] Roux M, Varrone C J P. Assessing the economic viability of the plastic biorefinery concept and its contribution to a more circular plastic sector[J]. Polymers, 2021,13(22):3883. [145] Ishii N, Inoue Y, Tagaya T, et al. Isolation and characterization of poly(butylene succinate)-degrading fungi[J]. Polymer Degradation and Stability, 2008,93(5):883-888. [146] Emadian S M, Onay T T, Demirel B J W M. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017,59: 526-536. [147] Rudnik E, Briassoulis D J I C, Products. Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing[J]. Industrial Crops and Products, 2011,33(3):648-658. [148] Boyandin A N, Prudnikova S V, Karpov V A, et al. Microbial degradation of polyhydroxyalkanoates in tropical soils[J]. International Biodeterioration & Biodegradation, 2013,83:77-84. [149] Maurizio T, Miriam W, Michela S, et al. Laboratory test methods to determine the degradation of plastics in marine environmental conditions[J]. Frontiers in Microbiology, 2012,3:225. [150] Thellen C, Coyne M, Froio D, et al. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films[J]. Journal of Polymers and the Environment, 2008, 16(1):1-11. [151] Akram N, Saeed M, Usman M, et al. Recycling of bioplastics: Mechanism and economic benefits[J]. Handbook of Bioplastics and Biocomposites Engineering Applications, 2023:629-648. [152] Dilkes-hoffman L, Pratt S, Lant P, et al. The role of biodegradable plastic in solving plastic solid waste accumulation[M]. Plastics to energy. 2019:469-505. [153] Narancic T, Verstichel S, Reddy Chaganti S, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution[J]. Environmental science technology, 2018,52(18):10441-10452. [154] Rameshkumar S, Shaiju P, O'connor K E, et al. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21:75-81. [155] Emadian S M, Onay T T, Demirel B J W M. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017,59: 526-536. [156] 聂榕,彭伟,吕凡,等.生物可降解塑料厌氧消化降解研究进展[J]. 环境卫生工程, 2023,31(2):46-56. Nie R, Peng W, Lv F, et al. Research progress on degradation of biodegradable plastics during anaerobic digestion[J]. Environment Sanitation Engineering, 2023,31(2):46-56. [157] Ishii N, Inoue Y, Tagaya T, et al. Isolation and characterization of poly (butylene succinate)-degrading fungi[J]. Polymer Degradation and Stability, 2008,93(5):883-888. [158] Eang C, Nim B, Sreearunothai P, et al. Chemical upcycling of polylactide (PLA) and its use in fabricating PLA-based super- hydrophobic and oleophilic electrospun nanofibers for oil absorption and oil/water separation[J]. New Journal of Chemistry, 2022,46(31): 14933-14943. [159] Stasiškienė Ž, Barbir J, Draudvilienė L, et al. Challenges and strategies for bio-based and biodegradable plastic waste management in Europe[J]. Sustainability, 2022,14(24):16476. [160] European bioplastics[EB/OL]. https://www.european-bioplastics.org/bioplastics/waste-management/composting/.html2016-1-1/2023-3-20.