Leaching risk and solidification mechanisms of electrolytic manganese residue pollutants based on the geopolymer system
LIU Bo1,2, HE Li-li1,2, YUE Bo1, MENG Bang-bang1, WANG Tao1,2, GAO Hong2
1. Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650504, China
Abstract:In order to mitigate the potential environmental risks associated with electrolytic manganese residue (EMR), a geological polymerization reaction was employed to carry out its solidification and stabilization. Through leaching toxicity tests and consecutive BCR extraction experiments, the leaching risk of electrolytic manganese residue-based polymer (EMRGP) was ascertained. Characterization techniques such as XRF, XRD, SEM-EDX, and XPS were utilized to investigate the solidification mechanism. The results revealed that the concentrations of Mn2+ and NH4+ in the leachate from EMRGP were merely 4.64μg/L and 0.99mg/L, meeting the standards for discharge and reutilization. BCR continuous extraction experiments showed a lower leaching risk for EMRGP. During the solidification and stabilization process, the formation of silica-alumina gel occurred. NH4+ either volatilized as NH3 or precipitated as struvite, while Mn2+, apart from being oxidized to Mn3+ and Mn4+, concomitantly precipitating with other heavy metal species in the guise of hydroxide precipitates or enshrouded within the protective vestiges of silico-aluminous gels. This approach significantly alleviated the potential environmental risk associated with EMR.
刘博, 何莉莉, 岳波, 孟棒棒, 王涛, 高红. 基于地聚物体系的电解锰渣污染物的溶出风险及固化机理[J]. 中国环境科学, 2023, 43(12): 6465-6473.
LIU Bo, HE Li-li, YUE Bo, MENG Bang-bang, WANG Tao, GAO Hong. Leaching risk and solidification mechanisms of electrolytic manganese residue pollutants based on the geopolymer system. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(12): 6465-6473.
[1] He S, Wilson B P, Lundström M, et al. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process[J]. Journal of Hazardous Materials, 2021,402:123561. [2] Wang Y, Gao S, Liu X, et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3- N recovery benefits[J]. Journal of Hazardous Materials, 2019,378:120768. [3] Shu J, Chen M, Wu H, et al. An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43− and F− in electrolytic manganese residue and phosphogypsum[J]. Journal of Hazardous Materials, 2019,376:212-222. [4] Lan J, Sun Y, Huang P, et al. Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes[J]. Chemosphere, 2020,252:126487. [5] Wang D Q, Wang Q, Xue J F. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material[J]. Resources, Conservation & Recycling, 2020,154(C):104645. [6] Sharma Y C, Uma, Singh S N, et al. Fly ash for the removal of Mn(II) from aqueous solutions and wastewaters[J]. Chemical Engineering Journal, 2007,132(1):319-323. [7] Huang H M, Xiao X M, Yan B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent[J]. Journal of Hazardous Materials, 2009,175(1):247-252. [8] Zheng F, Zhu H, Luo T, et al. Pure water leaching soluble manganese from electrolytic manganese residue: Leaching kinetics model analysis and characterization[J]. Journal of Environmental Chemical Engineering, 2020,8(4):103916. [9] Peng T F, Xu L J, Wang X M. Leaching of manganese residue for the preparation of trimanganese tetroxide with a high surface area[J]. Chinese Journal of Geochemistry, 2013,32(3):331-336. [10] Suanon F, Tang L, Sheng H, et al. TW80and GLDA-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: Does it worth?[J]. Chemical Engineering Journal, 2020,385:123934. [11] 刘博,梁宇廷,孟棒棒,等.电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测[J]. 环境科学研究, 2023,36(10):2000-2010. Liu B, Liang Y T, Meng B B, et al. Study on Leaching Behavior of Manganese in Electrolytic Manganese Residue and Red Mud Paving Bricks and Long-Term Release Prediction[J]. Research of Environmental Sciences, 2023,36(10):2000-2010. [12] 孙滢斐,张攀,胡敬平,等.地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023,37(7):252-258. Sun Y F, Zhang P, Hu J P, et al. Research Progress of Using Geopolymers to Solidify Lead Element from Lead-containing Pollutants[J]. MATERIALS REPORTS, 2023,37(7):252-258. [13] 刘扬,陈湘,王柏文,等.碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023,42(4):1353-1362. Liu Y, Chen X, Wang B W, et al. Preparation and Strength Mechanism of Alkali-Activated Fly Ash-Slag-Carbide Slag Based Geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023,42(4):1353-1362. [14] Alex T C, Kalinkin A M, Nath S K, et al. Utilization of zinc slag through geopolymerization: Influence of milling atmosphere[J]. International Journal of Mineral Processing, 2013,123:102-107. [15] Lita D, Suprihanto N, Enri D, et al. Preparation of alkali-activated fly ash-based geopolymer and their application in the adsorption of copper (II) and zinc (II) ions[J]. MATEC Web of Conferences, 2019, 276:06012. [16] Sarkar C, Basu J K, Samanta A N. Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for Zinc (II) removal[J]. Advanced Powder Technology, 2018,29(5):1142-1152. [17] Zhan X Y, Wang L A, Hu C C, et al. Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system[J]. Waste Management, 2018,82:62-70. [18] Zhang Y L, Liu X M, Xu Y T, et al. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: Mechanical properties and Mn2+ stabilization/solidification characterization[J]. Journal of Hazardous Materials, 2020,390(C):122188. [19] 张先伟,高永红,王平,等.电解锰渣-生活垃圾焚烧底渣协同制备路面基层材料试验研究[J]. 硅酸盐通报, 2023,42(4):1363-1373. Zhang X W, Gao Y H, Wang P, et al. Experimental Research on Synergistic Preparation of Road Base Material by Electrolytic Manganese Residue-Municipal Solid Waste Incineration Bottom Ash[J]. Bulletin of the Chinese Ceramic Society, 2023,42(4):1363-1373. [20] HJ 557-2010固体废物浸出毒性浸出方法水平震荡法[S]. HJ 557-2010 Solid waste—Extraction procedure for leaching toxicity—Horizontal vibration method[S]. [21] Nath S K. Fly ash and zinc slag blended geopolymer: Immobilization of hazardous materials and development of paving blocks[J]. Journal of Hazardous Materials, 2020,387(C):121673. [22] GB 8978-1996污水综合排放标准[S]. GB 8978-1996 Integrated wastewater discharge standard[S]. [23] HJ 1241-2022锰渣污染控制技术规范[S]. HJ 1241-2022 Technical specification for pollution control of manganese residue[S]. [24] HJ 766-2015固体废物金属元素的测定电感耦合等离子体质谱法[S]. HJ 766-2015 Solid Waste-Determination of metals-Inductively coupled plasma mass spectrometry (ICP-MS)[S]. [25] HJ 535-2009水质氨氮的测定纳氏试剂分光光度法[S]. HJ 535-2009 Water quality―Determination of ammonia nitrogen― Nessler's reagent spectrophotometry[S]. [26] GB 6920-86水质pH值的测定玻璃电极法[S]. GB 6920-86 Water quality-Determination of pH value-Glass electrode method[S]. [27] 杜梅,王宇,李灿然,等.西藏某矿厂铁尾矿中重金属形态及迁移潜力分析[J]. 有色金属工程, 2022,12(4):140-145. Du M, Wang Y, Li C R, et al. Analysis on the Form and Migration Potential of Heavy Metals in Iron Tailings of a Mine in Tibet[J]. Nonferrous Metals Engineering, 2022,12(4):140-145. [28] 杜兵,但智钢,肖轲,等.稳定剂对电解锰废渣中高浓度可溶性锰稳定效果的影响[J]. 中国环境科学, 2015,35(4):1088-1095. Du B, Dan Z G, Xiao K, et al. Effects of different reagents on the stabilization of soluble manganese from electrolytic manganese solid waste[J]. China Environmental Science, 2015,35(4):1088-1095. [29] 陈璐,文方,程艳,等.铅锌尾矿中重金属形态分布与毒性浸出特征研究[J]. 干旱区资源与环境, 2017,31(3):89-94. Chen L, Wen F, Cheng Y, et al. Characteristics of speciation distribution and toxicity leaching of heavy metals in Pb-Zn tailings[J]. Journal of Arid Land Resources and Environment, 2017,31(3):89-94. [30] 董馨予,王海峰,贺跃,等.电解锰渣的浸出毒性分析及无害化处理[J]. 无机盐工业, 2023,55(5):85-90. Dong X Y, Wang H F, He Y, et al. Exleaching toxicity analysis and harmless treatment of electrolytic manganese residue[J]. Inorganic Chemicals Industry, 2023,55(5):85-90. [31] Vitalii P, Katja O, Mirja I. Optimizing activating solution and environmental leaching characteristics of Fe-rich alkali-activated Zn slag[J]. Journal of Hazardous Materials, 2023,445.130575. [32] Chen X, Shan X R, Shi Z J, et al. Analysis of the Spatio-Temporal Changes in Acid Rain and Their Causes in China (1998~2018)[J]. Journal of Resources and Ecology, 2021,12(5):593-599. [33] Wen J, Yi Y J, Zeng G M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016,178:63-69. [34] Peng J F, Song Y H, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2008, 161(2):633-640. [35] 折开浪,李萍,刘景财,等.碳酸化对不同碱度飞灰中重金属的长期影响[J]. 中国环境科学, 2022,42(8):3832-3840. She K L, Li P, Liu J C, et al. Long-term effect of carbonation on heavy metals in fly ash of different alkalinity[J]. China Environmental Science, 2022,42(8):3832-3840. [36] Jamali M K, Kazi T G, Afridi H I, et al. Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J]. Journal of Environmental Science and Health Part A, 2007,42(5):649-659. [37] Feng D W, Provis J L, Deventer J S J. Thermal activation of albite for the synthesis of one-part mix geopolymers[J]. Journal of the American Ceramic Society, 2012,95(2):565-572. [38] Zheng L, Wang W, Gao X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis[J]. Waste Management, 2016, 58:270-279. [39] 王登权,何伟,王强,等.重金属在水泥基材料中的固化和浸出研究进展[J]. 硅酸盐学报, 2018,46(5):683-693. Wang D Q, He W, Wang Q, et al. Review on Stabilization and Leaching of Heavy Metals in Cementitious Materials[J]. Journal of the Chinese Ceramic Society, 2018,46(5):683-693. [40] 金修齐,黄代宽,赵书晗,等.电解锰渣胶凝固化研究进展及其胶结充填可行性探讨[J]. 矿物岩石地球化学通报, 2020,39(1):97-103. Jin X Q, Huang D K, Zhao S H, et al. Research Progress in Cementation/Solidification and Possibility of Consolidated Backfilling of the Electrolytic Manganese Residue[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020,39(1):97-103. [41] Walkley B, Ke X, Hussein O, et al. Thermodynamic properties of sodium aluminosilicate hydrate (N-A-S-H)[J]. Dalton transactions, 2021,50(39):13968-13984. [42] 贾昆鹏,王雪,徐锋,等.调制比对HiPIMS制备多层DLC薄膜耐腐蚀性能的影响[J]. 中国表面工程, 2021,34(2):35-40. Jia K P, Wang X, Xu F, et al. Effects of Modulation Ratio on Corrosion Resistance of Multilayer DLC Films Prepared by HiPIMS[J]. China Surface Engineering, 2021,34(2):35-40. [43] Lee T, Bai H. Metal sulfate poisoning effects over MnFe/TiO2 for selective catalytic reduction of NO by NH3 at low temperature[J]. Industrial & Engineering Chemistry Research, 2018,57(14):4848-4858. [44] L'hôpital E, Lothenbach B, Scrivener K, et al. Alkali uptake in calcium alumina silicate hydrate (C-A-S-H)[J]. Cement and Concrete Research, 2016,85:122-136. [45] Kiventerä J, Lancellotti I, Catauro M, et al. Alkali activation as new option for gold mine tailings inertization[J]. Journal of Cleaner Production, 2018,187:76-84. [46] Huang X, Huang T, Li S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016,42(8):9538-9549. [47] Ma Y, Hu J, Ye G. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali- activated fly ash[J]. Journal of Materials Science, 2012,47(11):4568-4578. [48] 王开,吴新,梁财,等.基于二次铝灰的地聚反应稳固化垃圾飞灰[J]. 中国环境科学, 2020,40(10):4421-4428. Wang K, Wu X, Liang G, et al. Experimental study on the stabilization/solidification of MSWIFA by geopolymerization based on secondary aluminum dross[J]. China Environmental Science, 2020,40(10):4421-4428.