Application of radon-222 to assess groundwater discharge and associated nutrients input in the karst wetland
ZHANG Qi-yuan1, ZHAO Yu-qing1,2, LI Yuan-jun1, LI Xin-peng1
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004; 2. Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin 541004, China
Abstract:Application of radon-222 to assess groundwater discharge and associated nutrients input in the karst wetland. ZHANG Qi-yuan1, ZHAO Yu-qing1,2*, LI Yuan-jun1, LI Xin-peng1 (1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004;2.Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin 541004, China). China Environmental Science, 2024,44(6):3226~3239Abstracts:Baxian Lake, located in Huixian Wetland, was taken as the study’s object in this paper to investigate the groundwater discharge flux and the associated nutrient input. The samples of lake water, groundwater, sediments, and air collected in December 2021 (dry season) and May 2022 (wet season) were tested for physical and chemical properties, 222Rn and nutrients. The input items of 222Rn in Baxian Lake were 226Ra parent decay, sediment diffusion, and groundwater discharge. The output items included the runoff flux, decay of 222Rn inventory in the lake, and atmospheric diffusion. Then, the 222Rn mass balance model of Baxian Lake was established, and the groundwater discharge rate during the dry season and the rainy season were 110.60±23.75mm/d and 238.04±46.58mm/d, respectively. Based on the average nutrient concentration of groundwater around Baxian Lake, the nutrients flux from the groundwater discharge during the dry season were estimated as follows: (2.24 ±0.52)×10-3mol/m2×d (NH4+-N), (1.93 ±0.42)×10-2mol/(m2·d) (NO3--N), (1.20±0.26)×10-1mol/(m2·d) (TN), (1.97±0.42)×10-4mol/(m2·d) (TP). The nutrient fluxes from the groundwater discharge during the wet season were: (1.30±0.25)×10-2mol/(m2·d) (NH4+-N), (2.71±0.53)×10-2mol/(m2·d) (NO3--N),(2.18 ±0.43)×10-1mol/(m2·d) (TN), (4.51±0.89)×10-4mol/(m2·d) (TP). This study provides important information for water circulation and water ecosystem for the water resource management of Huixian Wetland.
张启元, 赵雨晴, 李远俊, 李鑫鹏. 222Rn示踪岩溶湿地地下水排泄及氮磷营养盐输入[J]. 中国环境科学, 2024, 44(6): 3226-3239.
ZHANG Qi-yuan, ZHAO Yu-qing, LI Yuan-jun, LI Xin-peng. Application of radon-222 to assess groundwater discharge and associated nutrients input in the karst wetland. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(6): 3226-3239.
[1] Dimova N T, Burnett W C, Chanton J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013,486:112-122. [2] Lee C M, Jiao J J, Luo X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong[J]. Science of The Total Environment, 2012,433:427-433. [3] Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J].The Science of the Total Environment, 2006,367(2/3):498-543. [4] 李煜鑫,程亚平.氡在地下水环境评估中的应用研究[J]地下水, 2023,45(2):4-7. Li Y X, Cheng Y P. A study on the application of radon in groundwater environmental assessment[J]. Ground water, 2023,45(2):4-7. [5] 袁晓婕,郭占荣,马志勇,等.基于222Rn质量平衡模型的胶州湾海底地下水排泄[J].地球学报, 2015,36(2):237-244. Yuan X J, Guo Z R, Ma Z Y, et al. The evaluation of submarine groundwater discharge in Jiaozhou bay based on 222Rn mass balance[J]. Acta Geoscientica Sinica, 2015,36(2):237-244. [6] 佀祥城,陈晓,陈法锦等.222Rn指示北部湾北部近海SGD输送的时空特征初探[J].海洋学研究, 2023,41(2):94-103. Si X C, Chen X, CHEN Jin-fa et al. A preliminary investigation on the spatial and temporal distribution of submarine groundwater dis charge in the northern Beibu Gulf as indicated by 222Rn activities[J]. Journal of Marine Sciences, 2023,41(2):94-103. [7] 范红晨,孙晓梁,杜尧,等.不同地下水端元选取对222Rn质量平衡模型量化湖底地下水排泄的影响[J].安全与环境工程, 2021,28(3):71-77. Fan H C, Sun X L, Du Y, et al. Influence of different groundwater end-members on 222Rn mass balance model used to quantify the lacustrine groundwater discharge[J]. Safety and Environmental Engineering, 2021,28(3):71-77. [8] 赵一,邹胜章,申豪勇,等.会仙湿地岩溶地下水系统水位动态特征与均衡分析[J].中国岩溶, 2021,40(2):325-333. Zhao Y, Zou S Z, Shen H Y, et al. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland[J]. Carsologica Sinica, 2021,40(2):325-333. [9] Chen J, Luo M, Ma R, et al. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, South China[J]. Journal of Contaminant Hydrology, 2020, 234:103700. [10] 吴应科,莫源富,邹胜章.桂林会仙岩溶湿地的生态问题及其保护对策[J].中国岩溶, 2006,25(1):85-88. Wu Y K, Mo Y F, Zhou S Z, et al. Ecologlc problem and protection method of karst wetland in Hui xian,Guilin[J]. Carsolococa Sinca, 2006,(1):85-88. [11] 余悦,邢新丽,程铖,等.桂林会仙岩溶湿地水体与沉积物中有机氯农药污染特征[J].环境科学, 2023,44(3):1387-1396. Yu Y, Xing X L, Cheng C.et al. Pollution characteristics of organochlorine pesticides in water and sediments of Huixian Karst Wetland in Guilin[J]. Environmental Science, 2023,44(3):1387-1396. [12] 文云峰.会仙岩溶湿地水体富营养化现状及对策研究[D].南宁:广西大学, 2013. Wen Y F. Rairy Karst Wetland eutrophication situation and countermeasure research[D]. Nangning:Guangxi University, 2013. [13] 万祖鹏.会仙岩溶湿地睦洞河小流域浅层地下水氮磷污染及其模型模拟[D].桂林:桂林理工大学, 2021. Wan Z P. Nitrogen and phosphorus pollution in shallow groundwater of Mudong River watershed in Huixian karst wetland and its simulation model[D]. Guilin:Guilin university of technology,, 2013. [14] 蒋勇军,袁道先,谢世友,等.典型岩溶农业区地下水质与土地利用变化分析--以云南小江流域为例[J].地理学报, 2006,(5):471-481. Jiang Y J,Yuan D X,Xie S Y, et al. The groundwater quality and land use change in a typical karst agricultur al region:A case study of Xiaojiang Water shed, Yunnan[J]. ACTA GEOGRAPHICA SINICA, 2006,(5):471-481. [15] 张军以,王腊春,马小雪,等.西南岩溶地区地下水污染及防治途径[J].水土保持通报, 2014,34(2):245-249. Zhang J Y,Wang L C,Ma X,X,et al. Groundwater pollution and controlling measures in karst mountainous areas of Southwestern China[J]. Bulletin of Soil and Water Conservation, 2014,34(2):245-249. [16] 任智丽,路明,孙小双.会仙湿地岩溶地下水数值模拟[J].南水北调与水利科技, 2020,18(5):157-164. Ren Z L, Lu M, Sun X S, et al. Numerical simulation of karst groundwater in Huixian wetland[J]. South-to-North Water Transfers and Water Science&Technology, 2020,18(5):157-164. [17] 蔡德所.会仙岩溶湿地生态系统研究[M].地质出版社, 2012. Cai D S. Research on the ecosystem of Huixian Karst Wetland[M]. Geology Press, Beijing, 2012. [18] 邢梦龙,李海翔,姜磊,等.临桂新区环城水系及会仙岩溶湿地水污染时空特征[J].桂林理工大学学, 2019,39(1):168-176. Xing M L, Li H X, Jiang L, et al. Spatio-temporal characteristics of water pollutants in surrounding water system of Lingui and Huixian karst wetlands[J]. Journal of Guilin University of Technology, 2019,39(1):168-176. [19] Seeton C J. Viscosity-temperature correlation for liquids[J]. Tribology Letters, 2006,22(1):67-78. [20] 陈小刚.海岸带典型红树林,盐沼,沙质海滩和岩溶生态系统海底地下水排放[D].上海:华东师范大学, 2019. Chen X G. Submarine groundwater discharge in mangroves, salt marshes, sandy beaches and karst ecosystems of typical coastal zones[D]. Shanghai:East China Normal University, 2019. [21] 郭芳,韦丽琼,姜光辉.广西典型岩溶水系统环境中222Rn的分布及指示意义[J].中国环境科学, 2021,41(9):4294-4299. Guo F, Wei L Q, Jiang G H, et al. Characteristic of radon in typical karst water systems and its indicating significance in Guangxi, China[J]. China Environmental Science. [22] 张艳.胶州湾海底地下水与营养物质输入及其环境效应[D].北京:中国地质大学, 2019:30-31. Zhang Y. Submarine groundwater discharge and associated nutrient inputs into Jiaozhou Bay and their environmental effects[D]. Beijing:China University of Geosciences, 2019. [23] 张艳,王学静,薛岩,等.中国近岸海底地下水排泄(SGD)研究进展[J].中国科学:地球科学, 2022,52(11):2139-2151. Zhang Y, Wang X J, Xue Y, et al. Progress in the study of submarine groundwater discharge (SGD) in the nearshore of China[J]. Earth Science, 2022,52(11):2139-2151. [24] Kim G, Burnett W, Dulaiova H, et al. Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor[J]. 2001,35(23):4680-4683. [25] Moore W S. Extraction of radium from natural waters using manganese-impregnated acrylic fibers[J]. 1973,78(36):8880-8886. [26] 汪迁迁.镭氡同位素评估渤海湾海底地下水排泄及其陆源物质输送通量[D].北京:中国地质大学, 2020. Wang Q Q. Estimating submarine groundwater discharge (SGD) and its associated terrestrial material fluxes into Bohai Bay using radium and radon isotopes[D]. Beijing:China University of Geosciences, 2020. [27] 李刚.感潮河段湿地地下水排泄及所携带污染物迁移交换研究[D].北京:中国地质大学, 2018. Li G. Study on groundwater discharge and associated pollutant inputs in tidal riverine wetlands:case study in Dan'ao Estuary, Daya Bay[D]. Beijing:China University of Geosciences (Beijing), 2018. [28] 张艳.氡同位素示踪莱州湾海底地下水排泄[D].北京:中国地质大学, 2016. Zhang Y. Estimation of submarine groundwater discharge into Laizhou Bay,China using 222Rn[D]. Beijing:China University of Geosciences, 2016. [29] Corbett D R, Burnett W C, Cable P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998,236(1/2):247-253. [30] Petermann E, Gibson J J, Knöller K, et al. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances[J]. Hydrological Processes, 2018,32(6):805-816. [31] Dimova N T, Burnett W C. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222[J]. Limnology and Oceanography, 2011,56(2):486-494. [32] Selvam S, Muthukumar P, Sajeev S, et al. Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India[J]. Geoscience Frontiers, 2021,12(1):29-38. [33] Sun X, Du Y, Deng Y, et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (Rn-222,O-18, Cl-)[J]. Environmental Geochemistry and Health, 2021,43(3):1239-1255. [34] Kluge T, Ilmberger J, von Rohden C, et al. Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis[J]. Hydrology and Earth System Sciences, 2007,11(5):1621-1631. [35] 安安.用222Rn天然示踪剂评估大亚湾海底地下水排泄及营养盐输入[D].北京:中国地质大学, 2017. An A. Evaluation of submarine groundwater discharge and nutrient loading into Daya Bay, China using 222Rn[D]. Beijing:China University of Geosciences, 2017. [36] Garcia-Orellana J, Rodellas V, Tamborski J, et al. Radium isotopes as submarine groundwater discharge (SGD) tracers:Review and recommendations[J]. Earth-Science Reviews, 2021,220:103681. [37] Diffusion coefficients in nearshore marine sediments:Ullman, W.J. and R.C. Aller, 1982. Limnol. Oceanogr., 27(3):552-556[J]. Deep Sea Research Part B Oceanographic Literature Review, 1982,29(12):766. [38] Chan L H, Edmond J M, Stallard R F, et al. Radium and barium at GEOSECS stations in the Atlantic and Pacific[J]. Earth and Planetary Science Letters, 1976,32(2):258-267. [39] 袁晓婕,郭占荣,黄磊等.用镭-226示踪胶州湾的海底地下水排泄[J].吉林大学学报(地球科学版), 2016,46(5):1490-1500. Yuan X J, Guo Z R, Huang L, et al. Estimating submarine groundwater discharge into the Jiaozhou Bay using 226Ra[J]. Journal of Jilin University (Earth Science Edition), 2016,46(5):1490-1500. [40] Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003,69(1/2):21-35. [41] Turner S M, Malin G, Nightingale P D, et al. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere[J]. Marine Chemistry, 1996,54(3/4):245-262. [42] MacIntyre S Trace gas exchange across the air-sea interface in fresh water and coastal marine environments[J]. Biogenic Trace Gases:Measuring Emissions from Soil and Water, 1995:52-97. [43] Zhang Y, Li H, Wang X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using Rn-222[J]. Journal of Hydrology, 2016,533:103-113. [44] Peng T H, Takahashi T. Surface radon measurements in the North Pacific Ocean station Papa[J]. 1974,79(12):1772-1780. [45] Gill A E, Adrian E. Atmosphere-ocean dynamics[M]. Academic Press, 1982. [46] Luo X, Jiao J J, Wang X S, et al. Temporal Rn-222 distributions to reveal groundwater discharge into desert lakes:Implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016,534:87-103. [47] 朱丹尼,邹胜章,周长松,等.桂林会仙岩溶湿地水位动态特征及水文生态效应[J].中国岩溶, 2021,40(4):661-670. Zhu D N,Zhou S Z,Zhou C S, et al. Dynamic characteristics of water Level and hydro-ecological effects in Huixian karst wetland in Guilin[J]. Carsolococa Sinca, 2021,40(4):661-670. [48] Chen X, Cukrov N, Santos I R, et al. Karstic submarine groundwater discharge into the Mediterranean:Radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling[J]. Geochimica et Cosmochimica Acta, 2020,268:467-484. [49] 王焰新,杜尧,邓娅敏,等.湖底地下水排泄与湖泊水质演化[J].地质科技通报, 2022,41(1):1-10. Wang Y X, Du Y, Deng Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bullet in of Geological Scienceand Technology, 2022,41(1):1-10. [50] GB/T14848-2017地下水质量标准[S]. GB/T14848-2017 Standard for gronudwater quality[S]. [51] GB3838-2002地表水环境质量标准[S]. GB3838-2002 Enviromental quality sandards for surface water[S]. [52] Moore W S. The subterranean estuary:A reaction zone of ground water and sea water[J]. 1999,65(1/2):111-125. [53] Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by Rn-222[J]. Marine Chemistry, 2008,111(3/4):160-170. [54] 孔范龙,郗敏,徐丽华,等.富营养化水体的营养盐限制性研究综述[J].地球环境学报, 2016,7(2):121-129. Kong F L, Xi M, Xu L H, et al. Review of studies on the limitation of nutrients in the eutrophic wate[J]. Journal of Earth Environment, 2016,7(2):121-129. [55] 谢晓琳.桂林市会仙试区氮磷污染时空分布特征及其影响因素研究[D].桂林:桂林理工大学, 2020. Xie X L. Temporal and spatial distribution characteristics of nitrogen and phosphorus pollution and its impact factors in Huixian Experimental Area of Guilin City[D]. Guilin:Guilin university of technology, 2013.