The influence of soil physics and chemical properties on groundwater nitrogen pollution in the riparian zone of Shaying River
LI Bao-ling1,2,3, YANG Li-hu2,3, SONG Xian-fang2,3, QIN Ming-zhou1
1. College of Geography and Environmental Sciences, Henan University, Kaifeng 475004, China; 2. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, China Academy of Sciences, Beijing 100101, China; 3. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
Abstract:Taking the typical section of Shaying River as the research object, we collected river water, soil and groundwater samples from riparian zones and analyzed the physicochemical indexes, aiming to deeply explore the impact mechanism of soil physical and chemical properties on groundwater nitrogen concentration in the riparian zones. The results showed that the total nitrogen (TN) content in farmland riparian soils is higher than that of the riparian zone of orchards, indicating a 1.15 times higher TN content. The TN contents of the riparian soils were highest at about 200m from the river bank. There is a certain response relationship between groundwater and soil nitrogen content in the riparian zone, showing similar spatial distribution characteristics. Groundwater NO3--N concentrations in the riparian zone of agricultural fields (0.56~25.17mg/L) were significantly higher than those in the riparian zone of orchards (0~0.97mg/L); groundwater NO3--N concentrations in the far bank (>200m) were significantly higher than those in the near bank (<100m). Soil nitrogen is one of the main sources of nitrogen pollution in riparian groundwater. The high content of clay particles in the soil and the amount of nitrogen application make the soil particles more likely to adsorb NO3--N. It increases the risk of nitrogen pollution in riparian groundwater. This study reveals the influence mechanism of soil physical and chemical properties on groundwater nitrogen content in the riparian zones. It provides a reference for the prevention and control of groundwater nitrogen pollution in locally. These findings could help develop feasible land management strategies to slow or prevent the further spread of groundwater nitrogen contamination.
李宝玲, 杨丽虎, 宋献方, 秦明周. 沙颍河典型河段河岸带土壤理化性质对地下水氮污染的影响[J]. 中国环境科学, 2024, 44(7): 3955-3965.
LI Bao-ling, YANG Li-hu, SONG Xian-fang, QIN Ming-zhou. The influence of soil physics and chemical properties on groundwater nitrogen pollution in the riparian zone of Shaying River. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(7): 3955-3965.
[1] Zhang J, Liang X, Zhang Y K, et al. Groundwater responses to recharge and flood in riparian zones of layered aquifers: An analytical model [J]. Journal of Hydrology, 2022,614:128547. [2] 陈淑娴,尚睿华,冯予诚,等.兴隆水利枢纽对汉江河岸带氮素分布特征的影响[J]. 水文地质工程地质, 2021,(3):48. Chen S X, Shang R H, Feng Y C, et al.et al. Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone [J]. Hydrology & Engineering Geology, 2021,(3):48. [3] Dwivedi D, Arora B, Steefel C I, et al. Hot spots and hot moments of nitrogen in a riparian corridor [J]. Water Resources Research, 2018, 54(1):205-222. [4] Lutz S R, Trauth N, Musolff A, et al. How important is denitrification in riparian zones? Combining end‐member mixing and isotope modeling to quantify nitrate removal from riparian groundwater [J]. Water Resources Research, 2020,56(1):e2019WR025528. [5] McPhillips L E, Groffman P M, Goodale C L, et al. Hydrologic and biogeochemical drivers of riparian denitrification in an agricultural watershed [J]. Water, Air, & Soil Pollution, 2015,226:1-17. [6] Maı̂tre V, Cosandey A C, Desagher E, et al. Effectiveness of groundwater nitrate removal in a river riparian area: the importance of hydrogeological conditions [J]. Journal of Hydrology, 2003,278(1-4):76-93. [7] 张万锋,杨树青,孙多强,等.秸秆覆盖与氮减施对土壤氮分布及地下水氮污染影响[J]. 环境科学, 2021,42(2):786-795. Zhang W F, Yang S, Q, Sun, D, Q, et al. Effects of straw mulching and nitrogen reduction on the distribution of soil nitrogen and groundwater nitrogen pollution [J]. Environmental Science, 2021,42(2):786-795. [8] Wang S, Wang W, Zhao S, et al. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones [J]. Water Research, 2019, 162:139-150. [9] 叶远行,陈安强,李林,等.休耕对抚仙湖周边农田土壤剖面和浅层地下水中氮累积的影响[J]. 环境科学, 2024,45(6):3225-3233. Ye Y X, Chen A Q, Li L, et al. Effect of fallow on nitrogen accumulation in soil profile and shallow groundwater in cropland around Fuxian Lake [J]. Environmental Science, 2024,45(6):3225-3233. [10] 苏永中,杨晓,杨荣.黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响[J]. 环境科学, 2014,35(10): 3683-3691. Su Y Z, Yang X, Yang R. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a Marginal Oasis in the Middle of Heihe River Basin [J]. Environmental Science, 2014,35(10):3683-3691. [11] Rogers K M, van der Raaij R, Phillips A, et al. A national isotope survey to define the sources of nitrate contamination in New Zealand freshwaters [J]. Journal of Hydrology, 2023,617:129131. [12] Schipper L A, Vojvodić-Vuković M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust [J]. Ecological Engineering, 2000,14(3):269-278. [13] Ma P, Liu S, Yu Q, et al. Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China [J]. Environmental Science and Pollution Research, 2019,26:11153-11169. [14] Ma P, Li X, Chen F, et al. The isotopomer ratios of N2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N2O in the heavy ammonia polluted rivers [J]. Science of the total environment, 2019,687:1315-1326. [15] 陈云增,陈志凡,马建华,等.沙颍河流域典型癌病高发区土壤硝态氮对地下水和蔬菜硝酸盐积累的影响[J]. 环境科学学报, 2016,36(3): 990-998. Chen Y Z, Chen Z F, Ma J H, et al. Effects of soil nitrate nitrogen on the nitrate accumulation in groundwater and vegetables in a typical high cancer incidence area of Shaying River basin [J]. Acta Scientiae Circumstantiae, 2016,36(3):990-998. [16] 白莹,薛山,鲁善海,等.沙颍河流域平原区土壤氮空间分布特征及影响因素研究[J]. 南京大学学报:自然科学版, 2016,52:65-76. Bai Y, Xue S, Lu S H, et al. Study on spatial distribution characteristics of soil nitrogen and their influencing factors in Shaying River Basin [J]. Journal of Nanjing University (Natural Sciences), 2016,52:65-76. [17] 王献坤,左正金,罗文金,等.淮河流域沙颍河段浅层地下水水质状况及污染特征[J]. 工程勘察, 2007,(9):40-43. Wang X K, Zuo Z J, Luo W J, et al. Quality conditions and pollution characteristics of shallow groundwater in the Shaying reach of the Huaihe River Basin [J]. Geotechnical Investigation & Surveying, 2007,(9):40-43. [18] 李扬,王丽满,田浩毅,等.淮河流域河南平原区河流与地下水的相互影响[J]. 华北水利水电大学学报:自然科学版, 2017,38(1):36-40. Li Y, Wang L M, Tian H Y, et al. Interaction between river and groundwater in Henan Plain of Huaihe River Basin [J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2017,38(1):36-40. [19] 陈云增,李天奇,马建华,等.沙颍河流域典型癌病高发区水体硝态氮污染及健康风险[J]. 环境科学学报, 2019,39(5):1698-1707. Chen Y Z, Li T Q, Ma J H, et al. Water nitrate nitrogen pollution and health risk in a typical high cancer incidence area of Shaying River basin [J]. 2019,29(5):1698-1707. [20] 郑倩琳,王妍妍,闫雅妮,等.淮河流域浅层地下水氮污染阻断优先控制区识别[J]. 南京大学学报:自然科学版, 2016,52(1):103-114. Zheng Q L, Wang Y Y, Yan Y N, et al. Identification of prior control areas for nitrogen pollution blocking in shallow groundwater in Huai River Basin [J]. Journal of Nanjing University (Natural Sciences), 2016,52(1):103-114. [21] 闫雅妮,王妍妍,郑倩琳,等.地下水硝酸盐特殊脆弱性评价:以沙颍河流域为例[J]. 环境科学与技术, 2015,38(8):234-243. Yan Y N, Wnag Y Y, Zheng Q L, et al. Assessment of groundwater nitrate specific vulnerability: A case study in Shaying River Basin [J]. Environmental Science & Technology, 2015,38(8):234-243. [22] 王伟宁,许光泉,何晓文.淮北平原地下水三氮浓度分布规律及其影响因素分析[J]. 水资源保护, 2010,26(2):45-48. Wang W N, Xu G Q, He X W. Distribution and analysis of factors influencing three nitrogen compounds in groundwater of Huaibei Plain [J]. Water Resources Protection, 2010,26(2):45-48. [23] He B, He J, Wang L, et al. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: based on least squares surface fitting model [J]. Water Research, 2019,163:114880. [24] 郭战玲,沈阿林,寇长林,等.河南省地下水硝态氮污染调查与监测[J]. 农业资源与环境学报, 2008,25(5):125-128. Guo Z L, Shen A L, Kou C L, et al. Investigation and monitoring of groundwater nitrate nitrogen pollution in Henan Province [J]. Journal of Agricultural Resources and Environment, 2008,25(5):125-128. [25] 刘鑫,左锐,孟利,等.地下水位上升过程硝态氮(硝酸盐)污染变化规律研究[J]. 中国环境科学, 2021,41(1):232-238. Liu X, Zuo Y, Meng L, et al. Study on the variation law of nitrate pollution during the rise of groundwater level [J]. China Environmental Science, 2021,41(1):232-238. [26] 崔荣阳,刘刚才,胡万里,等.水位波动和氮浓度变化对氮转化功能基因丰度的影响[J]. 中国环境科学, 2022,42(11):5378-5386. Cui R Y, Liu G C, Hu W L, et al. Effects of water table fluctuations and nitrogen concentration variations on the abundances of nitrogen- transforming functional genes in soil profiles [J]. China Environmental Science, 2022,42(11):5378-5386. [27] Li B, Yang L, Song X, et al. Identifying surface water and groundwater interactions using multiple experimental methods in the riparian zone of the polluted and disturbed Shaying River, China [J]. Science of The Total Environment, 2023,875:162616. [28] 廖曼,马腾,郑倩琳,等.淮河流域农业生态系统中地下水体氮源追溯[J]. 中国生态农业学报(中英文), 2019,27(5):665-676. Liao M, Ma T, Zheng Q L, et al. Tracing groundwater nitrogen sources in Huai River Basin agro-ecosystem [J]. Chinese Journal of Eco- Agricultrue, 2019,27(5):665-676. [29] 马建琴,和鹏飞,彭高辉,等.基于三维Copula函数的沙颍河流域水文干旱频率分析[J]. 灌溉排水学报, 2017,36(9):102-107. Ma J Q, He P F, Peng G H, et al. Analyzing the drought frequency in Shaying River Basin using the three-dimensional Copula Function [J]. Journal of Irrigation and Drainage, 2017,36(9):102-107. [30] 左其亭,罗增良,石永强,等.沙颍河流域主要参数与自然地理特征[J]. 水利水电技术, 2016,47(12):66-72. Zuo Q T, Luo Z L, Shi Y Q, et al. Main parameters and physiographic characteristics of Shayinghe River Basin [J]. China Academic Journal Electronic Publishing House, 2016,47(12):66-72. [31] Li B, Song X, Yang L, et al. Insights onto hydrologic and hydro- chemical processes of riparian groundwater using environmental tracers in the highly disturbed Shaying River Basin, China [J]. Water, 2020,12(7):1939.DOI:10.3390/w12071939. [32] 吴克宁,赵瑞.土壤质地分类及其在我国应用探讨[J]. 土壤学报, 2019,(1):227-241. Wu K N, Zhao R. Soil texture classification and its application in China [J]. Acta Pedolofica Sinica, 2019,(1):227-241. [33] 崔楠,吕光辉,刘晓星,等.胡杨、梭梭群落土壤理化性质及其相互关系[J]. 干旱区研究, 2015,32(3):476-482. Cui N, Lv G H, Liu X X, et al. Soil physical-chemical properties of populus euphratica and haloxylon persicum communities and their relationship [J]. Arid Zone Research, 2015,32(3):476-482. [34] 王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J]. 环境科学, 2002,23(3):79-83. Wang Z H, Zong Z Q, Li S X, et al. Nitrate accumulation in vegetables and its residual in vegetable fields [J]. Environmental Science, 2002, 23(3):79-83. [35] 曾凯,刘琳,蔡义民,等.地下生态系统中氮素的循环及影响因素[J]. 草业科学, 2017,34(3):502-514. Zeng K, Liu L, Cai Y M, et al. The nitrogen cycle and factors affecting it in the belowground ecosystem [J]. Pratacultural Science, 2017, 34(3):502-514. [36] Wang J, Yan Y, Bai J, et al. Influences of riverbed siltation on redox zonation during bank filtration: a case study of Liao River, Northeast China [J]. Hydrology Research, 2020,51(6):1478-1489. [37] Wang L, Li M. Review of soil dissolved organic nitrogen cycling: Implication for groundwater nitrogen contamination [J]. Journal of Hazardous Materials, 2023,132713. [38] Xin J, Liu Y, Chen F, et al. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system [J]. Water research, 2019,165,114977. [39] 刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J]. 土壤学报, 2006,43(3):405-413. Liu H B, Li Z H, Zhang Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing Plain [J]. Acta Pedologica sinica, 2006,43(3):405-413. [40] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes [J]. Water research, 2018,42(16):4215-4232. [41] Andrade, A. I. A. S. S., Stigter, T. Y. Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use [J]. Agricultural Water Management, 2009,96(12):1751-1765. [42] 孙源媛,黄俊霖,郑明霞,等.洪水对河岸带地下水水化学特征影响:以奎河为例[J]. 安全与环境学报, 2019,19(5):1775-1783. Sun Y Y, Huang J L, Zheng M X, et al. Impact of flood water on hydrochemical features of groundwater in riparian zone, a case study in Kuihe River, Anhui. Journal of safety and environment, 2019,19(5): 1775-1783. [43] 王琼,范康飞,范志平,等.河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志, 2020,39(2):665-677. Wang Q, Fan K F, Fan Z P, et al. Nitrogen pollutant removal by riparian buffer zone: A review [J]. Chinese Journal of Ecology, 2020, 39(2):665-677. [44] 范伟,章光新,李然然.湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展, 2012,27(4):413-423. Fan W, Zhang G X, Li R R. Review of groundwater-surface water interactions in wetland [J]. Advances in Earth Science, 2012,27(4): 413-423. [45] 张宇,杨平恒,王建力,等.河水-地下水侧向交互带地球化学特征:以重庆市马鞍溪为例[J]. 环境科学, 2016,37(7):2478-2486. Zhang Y, Yang P H, Wang J L, et al. Geochemical characteristics of lateral hyporheic zone between the river water and groundwater, a case study of Maanxi in Chongqing [J]. Environmental Science, 2016, 37(7):2478-2486.