Advances in microbial fixation and conversion mechanisms of carbon dioxide derived from steel off-gas
LU Jia-ying1, WANG Yu-ming2, LI Xian-wei2, XIONG Li-jun3, LI Dan1
1. Department of Environmental Science and Engingering, FuDan University, Shanghai 200433, China; 2. Baoshan Iron and Steel Co., Ltd. Central Research Institute, Shanghai 201900, China; 3. Institute of Land Development and RegionalEconomy, Chinese Academy of Macroeconomic Research, Beijing 100038, China
Abstract:The steel industry plays a pivotal role in economic development. However, it stands as a significant contributor to large-scale CO2 emissions. Based on the backdrop of global climate change, it is imperative and urgent to reduce CO2 emissions to alleviate global climate changes and strive for sustainable development. Genetically engineered bacteria exhibit a remarkable capacity to assimilate CO2 via regulation of genes of interest, rational design of metabolic pathways, and optimization of bioprocesses. They allow the upcycling of CO2 into high-value-added products, such as organic acids, biofuels, and polyols, offering an innovative solution for the transitioning from the linear “acquisition-manufacturing-processing” economy to a circular economy with diminished carbon footprints. Consequently, this study highlights the research advancements concerning the microbial fixation/conversion of CO2 derived from steel off-gas. This review systematically summarizes the theoretical frontiers and engineering challenges and emphasizes the pivotal role of gene editing technology. The advancements in this field not only provide a new avenue for the reduction of CO2 emission and environmental protection but also pave a path with future innovations towards the attainment of sustainable development goals.
陆佳滢, 王玉明, 李咸伟, 熊丽君, 李丹. 钢铁废气中二氧化碳的微生物固定与转化机制研究进展[J]. 中国环境科学, 2024, 44(9): 5248-5262.
LU Jia-ying, WANG Yu-ming, LI Xian-wei, XIONG Li-jun, LI Dan. Advances in microbial fixation and conversion mechanisms of carbon dioxide derived from steel off-gas. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(9): 5248-5262.
[1] Cook J, Oreskes N, Doran P T, et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming [J]. Environmental Research Letters, 2016,11(4):48002. [2] Zhao X, Shang Y, Song M. Industrial structure distortion and urban ecological efficiency from the perspective of green entrepreneurial ecosystems [J]. Socio-Economic Planning Sciences, 2020,72:100757. [3] Chu Z, Cheng M, Yu N N. A smart city is a less polluted city[J]. Technological Forecasting and Social Change, 2021,172:121037. [4] 毛显强,邢有凯,高玉冰,等.温室气体与大气污染物协同控制效应评估与规划[J]. 中国环境科学, 2021,41(7):3390-3398. Mao X Q, Xing Y K, Gao Y B, et al. Study on GHGs and air pollutants co-control: assessment and planning [J]. China Environmental Science, 2021,41(7):3390-3398. [5] Caillat S. Burners in the steel industry: Utilization of by-product combustion gases in reheating furnaces and annealing lines [J]. Energy Procedia, 2017,120:20-27. [6] 汤铃,贾敏,伯鑫,等.中国钢铁行业排放清单及大气环境影响研究[J]. 中国环境科学, 2020,40(4):1493-1506. Tang L, Jia M, Bo X, et al. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry [J]. China Environmental Science, 2020,40(4):1493-1506. [7] World Steel Association. Climate change and the production of iron and steel [Z]. https://worldsteel.org/publications/policy-papers/climate-change-policy-paper/. [8] International Energy Agency. Iron and steel technology roadmap -towards more sustainable steelmaking [Z]. https://www.iea.org/reports/iron-and-steel-technology-roadmap. [9] United Nations. United nations framework convention on climate change. [Z]. https://legal.un.org/avl/ha/kpccc/kpccc.html. [10] Li X, Damartzis T, Stadler Z, et al. Decarbonization in complex energy systems: A study on the feasibility of carbon neutrality for Switzerland in 2050[J]. Frontiers in Energy Research, 2020,8:549615. [11] Yoon J, Oh M. Strategies for biosynthesis of C1gas-derived polyhydroxyalkanoates: A review [J]. Bioresource Technology, 2022, 344:126307. [12] Bae J, Song Y, Lee H, et al. Valorization of C1gases to value-added chemicals using acetogenic biocatalysts [J]. Chemical Engineering Journal, 2022,428:131325. [13] Nguyen A D, Lee E Y. Engineered Methanotrophy: A sustainable solution for methane-based industrial biomanufacturing [J]. Trends in Biotechnology, 2021,39(4):381-396. [14] Gleizer S, Ben-Nissan R, Bar-On Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019,179(6):1255-1263. [15] Bang J, Hwang C H, Ahn J H, et al. Escherichia coli is engineered to grow on CO2 and formic acid [J]. Nature Microbiology, 2020,5(12): 1459-1463. [16] Gassler T, Sauer M, Gasser B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020,38(2):210-216. [17] Wurtzel E T, Vickers C E, Hanson A D, et al. Revolutionizing agriculture with synthetic biology [J]. Nature Plants, 2019,5(12): 1207-1210. [18] Bar-Even A, Noor E, Lewis N E, et al. Design and analysis of synthetic carbon fixation pathways [J]. Proceedings of the National Academy of Sciences, 2010,107(19):8889-8894. [19] Löwe H, Kremling A. In-depth computational analysis of natural and artificial carbon fixation pathways [J]. BioDesign Research, 2021, 2021:9898316. [20] Ljungdhal L G. The autotrophic pathway of acetate synthesis in acetogenic bacteria [J]. Annual Review of Microbiology, 1986,40(1): 415-450. [21] Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens [J]. Journal of Experimental Botany, 2012, 63(6):2325-2342. [22] 陶雨萱,郭亮,高聪,等.代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023,42(1):40-52. Tao Y X, Guo L, Gao C, et al. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023,42(1):40-52. [23] Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? [J]. Annual Review of Microbiology, 2011,65(1):631-658. [24] Schwander T, Schada Von Borzyskowski L, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016,354(6314):900-904. [25] Sage R F. Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature [J]. Journal of Experimental Botany, 2002,53(369):609-620. [26] Xia L, Jiang Y, Kong W, et al. Molecular basis for the assembly of RuBisCO assisted by the chaperone Raf1[J]. Nature Plants, 2020, 6(6):708-717. [27] Fuchs G, Stupperich E, Eden G. Autotrophic CO2 fixation in Chlorobium limicola. evidence for the operation of a reductive tricarboxylic acid cycle in growing cells [J]. Archives of Microbiology, 1980,128(1):64-71. [28] Huber H, Gallenberger M, Jahn U, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic archaeum Ignicoccus hospitalis [J]. Proceedings of the National Academy of Sciences, 2008,105(22):7851-7856. [29] Fast A G, Papoutsakis E T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals [J]. Current Opinion in Chemical Engineering, 2012,1(4):380-395. [30] Blöchl E, Rachel R, Burggraf S, et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C [J]. Extremophiles, 1997,1(1):14-21. [31] Bar-Even A, Flamholz A, Noor E, et al. Thermodynamic constraints shape the structure of carbon fixation pathways [J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2012,1817(9):1646-1659. [32] Bierbaumer S, Nattermann M, Schulz L, et al. Enzymatic conversion of CO2: from natural to artificial utilization [J]. Chemical Reviews, 2023,123(9):5702-5754. [33] Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways [J]. Applied and Environmental Microbiology, 2011,77(6):1925-1936. [34] Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria [J]. Nature Reviews Microbiology, 2014,12(12):809-821. [35] Kumar M, Sundaram S, Gnansounou E, et al. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review [J]. Bioresource Technology, 2018,247:1059-1068. [36] Wittenborn E C, Merrouch M, Ueda C, et al. Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase [J]. eLife, 2018,7:e39451. [37] Holo H. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate [J]. Archives of Microbiology, 1989,151(3):252-256. [38] Berg I A, Kockelkorn D, Buckel W, et al. A 3-Hydroxypropionate/4-Hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea [J]. Science, 2007,318(5857):1782-1786. [39] Liu Z, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020,3(3):274-288. [40] Ishii M, Chuakrut S, Arai H, et al. Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle [J]. Applied Microbiology and Biotechnology, 2004,64(5):605-610. [41] Keller M W, Schut G J, Lipscomb G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide [J]. Proceedings of the National Academy of Sciences, 2013,110(15):5840-5845. [42] Kono T, Mehrotra S, Endo C, et al. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea [J]. Nature Communications, 2017,8(1):14007. [43] Mall A, Sobotta J, Huber C, et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium [J]. Science, 2018,359(6375):563-567. [44] Santos Correa S, Schultz J, Lauersen K J, et al. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways [J]. Journal of Advanced Research, 2023,47: 75-92. [45] Figueroa I A, Barnum T P, Somasekhar P Y, et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway [J]. Proceedings of the National Academy of Sciences, 2018,115(1): E92-E101. [46] Cotton C A, Edlich-Muth C, Bar-Even A. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation [J]. Current Opinion in Biotechnology, 2018,49:49-56. [47] ánchez-Andrea I, Guedes I A, Hornung B, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans [J]. Nature Communications, 2020,11(1):5090. [48] Yishai O, Bouzon M, Döring V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. ACS Synthetic Biology, 2018,7(9):2023-2028. [49] Bruinsma L, Wenk S, Claassens N J, et al. Paving the way for synthetic C1 -Metabolism in Pseudomonas putida through the reductive glycine pathway [J]. Metabolic Engineering, 2023,76:215-224. [50] Zhang T, Shi X, Ding R, et al. The hidden chemolithoautotrophic metabolism of Geobacter sulfurreducens uncovered by adaptation to formate [J]. The ISME Journal, 2020,14(8):2078-2089. [51] Siegel J B, Smith A L, Poust S, et al. Computational protein design enables a novel one-carbon assimilation pathway [J]. Proceedings of the National Academy of Sciences, 2015,112(12):3704-3709. [52] Lu X, Liu Y, Yang Y, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design [J]. Nature Communications, 2019,10(1):1378. [53] Gong F, Li Y. Fixing carbon, unnaturally [J]. Science, 2016,354(6314): 830-831. [54] Bar-Even A. Formate assimilation: The metabolic architecture of natural and synthetic pathways [J]. Biochemistry, 2016,55(28):3851-3863. [55] Bar-Even A, Noor E, Flamholz A, et al. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes [J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2013,1827(8):1039-1047. [56] Claassens N J. Reductive glycine pathway: A versatile route for one-carbon biotech [J]. Trends in Biotechnology, 2021,39(4):327-329. [57] Yu H, Li X, Duchoud F, et al. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway [J]. Nature Communications, 2018,9(1):2008. [58] Cai T, Sun H, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide [J]. Science, 2021,373(6562):1523-1527. [59] Xiao L, Liu G, Gong F, et al. A minimized synthetic carbon fixation cycle [J]. ACS Catalysis, 2022,12(1):799-808. [60] Luo S, Lin P P, Nieh L, et al. A cell-free self-replenishing CO2-fixing system [J]. Nature Catalysis, 2022,5(2):154-162. [61] Kim S, Lindner S N, Aslan S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway [J]. Nature Chemical Biology, 2020,16(5):538-545. [62] Liang B, Zhao Y, Yang J. Recent Advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation [J]. Frontiers in Microbiology, 2020,11:592631. [63] Li D, Huang L, Liu T, et al. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres [J]. Chemosphere, 2019,237:124527. [64] Bang J, Ahn J H, Lee J A, et al. Synthetic formatotrophs for one-carbon biorefinery [J]. Advanced Science, 2021,8(12):2100199. [65] Zhao T, Li Y, Zhang Y. Biological carbon fixation: a thermodynamic perspective [J]. Green Chemistry, 2021,23(20):7852-7864. [66] Liu J, Zhang H, Xu Y, et al. Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system [J]. Nature Communications, 2023,14(1):2772. [67] Johnson M P. Photosynthesis [J]. Essays in Biochemistry, 2016,60(3): 255-273. [68] Hügler M, Wirsen C O, Fuchs G, et al. Evidence for autotrophic CO2fixation via the reductive tricarboxylic acid cycle by members of the ε subdivision of proteobacteria [J]. Journal of Bacteriology, 2005,187(9):3020-3027. [69] Eisen J A, Nelson K E, Paulsen I T, et al. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(14):9509-9514. [70] Beh M, Strauss G, Huber R, et al. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus [J]. Archives of Microbiology, 1993,160(4):306-311. [71] Bertsch J, öppinger C, Hess V, et al. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii [J]. Journal of Bacteriology, 2015,197(9): 1681-1689. [72] Radfar R, Leaphart A, Brewer J M, et al. Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica [J]. Biochemistry, 2000,39(47):14481-14486. [73] Klatt C G, Bryant D A, Ward D M. Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats [J]. Environmental Microbiology, 2007,9(8):2067-2078. [74] Alber B, Olinger M, Rieder A, et al. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. [J]. Journal of Bacteriology, 2006,188(24):8551-8559. [75] Yu H, Li J, Luan Y. Meta-analysis of soil mercury accumulation by vegetables [J]. Scientific Reports, 2018,8(1):1261. [76] Wu C, Lo J, Urban C, et al. Acetyl-CoA synthesis through a bicyclic carbon-fixing pathway in gas-fermenting bacteria [J]. Nature Synthesis, 2022,1(8):615-625. [77] Wang K, Da Y, Bi H, et al. A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae [J]. Renewable Energy, 2023,208:331-340. [78] Song Y, Lee J S, Shin J, et al. Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei [J]. Proceedings of the National Academy of Sciences, 2020,117(13):7516-7523. [79] Emerson D F, Stephanopoulos G. Limitations in converting waste gases to fuels and chemicals [J]. Current Opinion in Biotechnology, 2019,59:39-45. [80] Shih P M, Zarzycki J, Niyogi K K, et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a Cyanobacterium [J]. Journal of Biological Chemistry, 2014,289(14):9493-9500. [81] Beckmann J, Lehr F, Finazzi G, et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii [J]. Journal of Biotechnology, 2009, 142(1):70-77. [82] Straub M, Demler M, Weuster-Botz D, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii [J]. Journal of Biotechnology, 2014,178: 67-72. [83] Berla B, Saha R, Immethun C, et al. Synthetic biology of cyanobacteria: unique challenges and opportunities [J]. Frontiers in Microbiology, 2013,4:246. [84] Ramey C J, Barón-Sola Á, Aucoin H R, et al. Genome engineering in Cyanobacteria: Where we are and where we need to go [J]. ACS Synthetic Biology, 2015,4(11):1186-1196. [85] Gao X, Sun T, Pei G, et al. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals [J]. Applied Microbiology and Biotechnology, 2016,100(8):3401-3413. [86] Liu X, Xie H, Roussou S, et al. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production [J]. Current Opinion in Biotechnology, 2022,73:143-150. [87] Choi Y, Lee J W, Kim J W, et al. Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: A mini review [J]. Journal of Applied Phycology, 2020,32(3):1643-1653. [88] Kallio P, Kugler A, Pyytövaara S, et al. Photoautotrophic production of renewable ethylene by engineered cyanobacteria: Steering the cell metabolism towards biotechnological use [J]. Physiologia Plantarum, 2021,173(2):579-590. [89] Cheng D, Li X, Yuan Y, et al. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas [J]. Science of the Total Environment, 2019,650:2931-2938. [90] Ma S, Li D, Yu Y, et al. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide [J]. Environmental Pollution, 2019,252:344-351. [91] Wijffels R H, Kruse O, Hellingwerf K J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae [J]. Current Opinion in Biotechnology, 2013,24(3):405-413. [92] Gimpel J A, Henríquez V, Mayfield S P. In metabolic engineering of eukaryotic Microalgae: Potential and challenges come with great diversity [J]. Frontiers in Microbiology, 2015,6:1376. [93] Nybo S E, Khan N E, Woolston B M, et al. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals [J]. Metabolic Engineering, 2015,30:105-120. [94] Jaschke P R, Saer R G, Noll S, et al. Chapter twenty-three -Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons [M]. Netherlands: Elsevier, 2011, 497:519-538. [95] Xiong B, Li Z, Liu L, et al. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique [J]. Biotechnology for Biofuels, 2018,11(1):172. [96] Lu J, Brigham C J, Gai C S, et al. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha [J]. Applied Microbiology and Biotechnology, 2012,96(1):283-297. [97] Bi C, Su P, Müller J, et al. Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production [J]. Microbial Cell Factories, 2013,12(1):107. [98] Jiang Y, Yang X, Zeng D, et al. Microbial conversion of syngas to single cell protein: The role of carbon monoxide [J]. Chemical Engineering Journal, 2022,450:138041. [99] Ciani M, Lippolis A, Fava F, et al. Microbes: Food for the Future [J]. Foods, 2021,10(5):971. [100] Schiel-Bengelsdorf B, Dürre P. Pathway engineering and synthetic biology using acetogens [J]. FEBS Letters, 2012,586(15):2191-2198. [101] Bengelsdorf F R, Beck M H, Erz C, et al. Chapter Four -Bacterial anaerobic synthesis gas (syngas) and CO2+H2 fermentation [M]. United States: Academic Press Inc Elsevier Science, 2018,103: 143-221. [102] Jin S, Bae J, Song Y, et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of C1gases to biochemicals [J]. International Journal of Molecular Sciences, 2020,21(20):7639. [103] Dürre P, Eikmanns B J. C1-carbon sources for chemical and fuel production by microbial gas fermentation [J]. Current Opinion in Biotechnology, 2015,35:63-72. [104] Hoffmeister S, Gerdom M, Bengelsdorf F R, et al. Acetone production with metabolically engineered strains of Acetobacterium woodii [J]. Metabolic Engineering, 2016,36:37-47. [105] Köpke M, Held C, Hujer S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proceedings of the National Academy of Sciences, 2010,107(29):13087-13092. [106] Ueki T, Nevin K P, Woodard T L, et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii [J]. mBio, 2014,5(5):10-1128. [107] Kruyer N S, Peralta-Yahya P. Advancing the potential for the production of chemicals from carbon dioxide in Escherichia coli [J]. Biochemistry, 2020,59(6):731-732. [108] Bang J, Hwang C H, Ahn J H, et al. Escherichia coli is engineered to grow on CO2 and formic acid [J]. Nature Microbiology, 2020,5(12): 1459-1463. [109] Malubhoy Z, Bahia F M, de Valk S C, et al. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2022,21(1): 102. [110] Lv X, Cui S, Chen J, et al. Cascaded de novo biosynthesis of lacto-proteins from CO2 by engineered Pichia pastoris [J]. Green Chemistry, 2023,25(14):5460-5469. [111] Lin W, Ng I. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation [J]. Enzyme and Microbial Technology, 2020,133:109458. [112] Nguyen T H T, Park S, Jeong J, et al. Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas [J]. Journal of Applied Phycology, 2020,32(5):2829-2840. [113] Chang K S, Kim J, Park H, et al. Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9RNP method [J]. Bioresource Technology, 2020,303: 122932. [114] Wang X, Chang F, Wang T, et al. Production of N-acetylglucosamine from carbon dioxide by engineering Cupriavidus necator H16[J]. Bioresource Technology, 2023,379:129024. [115] Kim S, Jang Y J, Gong G, et al. Engineering Cupriavidus necator H16for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2 [J]. Microbial Cell Factories, 2022,21(1):231. [116] Tanaka K, Yoshida K, Orita I, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from CO2 by a recombinant Cupriavidus necator [J]. Bioengineering, 2021,8(11):179. [117] Gascoyne J L, Bommareddy R R, Heeb S, et al. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol [J]. Metabolic Engineering, 2021,67:262-276. [118] Nangle S N, Ziesack M, Buckley S, et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator [J]. Metabolic Engineering, 2020,62:207-220. [119] Miyahara Y, Yamamoto M, Thorbecke R, et al. Autotrophic biosynthesis of polyhydroxyalkanoate by Ralstonia eutropha from non-combustible gas mixture with low hydrogen content [J]. Biotechnology Letters, 2020,42(9):1655-1662. [120] Liew F E, Nogle R, Abdalla T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale [J]. Nature Biotechnology, 2022,40(3):335-344. [121] Mook A, Beck M H, Baker J P, et al. Autotrophic lactate production from H2+CO2 using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains [J]. Applied Microbiology and Biotechnology, 2022,106(4):1447-1458. [122] Jia D, He M, Tian Y, et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol [J]. ACS Synthetic Biology, 2021, 10(10):2628-2638. [123] Cheng C, Li W, Lin M, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose [J]. Bioresource Technology, 2019,284:415-423. [124] Hao T, Li G, Zhou S, et al. Engineering the reductive TCA pathway to dynamically regulate the biosynthesis of adipic acid in Escherichia coli [J]. ACS Synthetic Biology, 2021,10(3):632-639. [125] Hu G, Li Z, Ma D, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals [J]. Nature Catalysis, 2021,4(5):395-406. [126] Lee S Y, Kim Y S, Shin W R, et al. Non-photosynthetic CO2 bio-mitigation by Escherichia coli harbouring CBB genes [J]. Green Chemistry, 2020,22(20):6889-6896. [127] Baumschabl M, Ata Ö, Mitic B M, et al. Conversion of CO2 into organic acids by engineered autotrophic yeast [J]. Proceedings of the National Academy of Sciences, 2022,119(47):e2083140177. [128] Chen Z, Wang X, Liu L. Electrochemical reduction of carbon dioxide to value-added products: The electrocatalyst and microbial electrosynthesis [J]. The Chemical Record, 2019,19(7):1272-1282. [129] Irfan M, Bai Y, Zhou L, et al. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials [J]. Bioresource Technology, 2019,288: 121401. [130] Khan F I, Kr. Ghoshal A. Removal of volatile organic compounds from polluted air [J]. Journal of Loss Prevention in the Process Industries, 2000,13(6):527-545. [131] Xu D, Tree D R, Lewis R S. The effects of syngas impurities on syngas fermentation to liquid fuels [J]. Biomass and Bioenergy, 2011,35(7):2690-2696. [132] Ahmed A, Cateni B G, Huhnke R L, et al. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T [J]. Biomass and Bioenergy, 2006,30(7):665-672. [133] Ramachandriya K D, Kundiyana D K, Wilkins M R, et al. Carbon dioxide conversion to fuels and chemicals using a hybrid green process [J]. Applied Energy, 2013,112:289-299. [134] Ampelli C, Perathoner S, Centi G. CO2 utilization: an enabling element to move to a resource-and energy-efficient chemical and fuel production [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015,373(2037): 20140177. [135] Liew F E, Nogle R, Abdalla T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale [J]. Nature Biotechnology, 2022,40(3):335-344. [136] Griffin D W, Schultz M A. Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes [J]. Environmental Progress & Sustainable Energy, 2012,31(2):219-224. [137] de Souza Pinto Lemgruber R, Valgepea K, Tappel R, et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB) [J]. Metabolic Engineering, 2019,53:14-23. [138] Hurst K M, Lewis R S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation [J]. Biochemical Engineering Journal, 2010,48(2):159-165. [139] Atiyeh H, Lewis R S, Phillips J R, et al. Method improving producer gas fermentation. US; 10053711B2[P]. 2018-08-21. [140] Drzyzga O, Revelles O, Durante-Rodríguez G, et al. New challenges for syngas fermentation: towards production of biopolymers [J]. Journal of Chemical Technology & Biotechnology, 2015,90(10): 1735-1751. [141] Singla A, Verma D, Lal B, et al. Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol [J]. Bioresource Technology, 2014,172:41-49.