Study of hydro-chemical characteristics and influencing factors of the tropic status in typical karst reservoirs
FU Chen-le1,2, KANG Man-chun1,2, MENG Jiang-huai1,2, LIU Jia1,2, LIU liu3, LONG Liang-hong1,2, XIAO Shang-bin1,2
1. Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China; 2. Engineering Research Center of Ecology and Environment, Ministry of Education, Three Gorges Reservoir Area, Yichang 443002, China; 3. Provincial Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
Abstract:The hydro-chemical characteristics and trophic status of reservoirs are shaped by a combination of natural conditions and anthropogenic effects within the watershed.This study focuses on Xiaowan Reservoir (XW) and Danjiangkou Reservoir (DJK) to analyzes the main ions characteristics and spatial variations of nitrogen (N) and phosphorus (P) nutrients in their water bodies, we identify the primary sources of these ions and interprets the nutrient status of these karst reservoirs, along with the influencing factors. The results show that: The water chemistry of the karst reservoirs is governed by rock weathering, resulting in HCO3·SO4-Ca and HCO3-Ca types for XW and DJK respectively; Both reservoirs exhibit high anthropogenic inputs of SO42-and NO3-; In both reservoirs, nitrogen (N) and phosphorus (P) predominant exist in dissolved forms. While no carbon-limitation was observed, N-limitation is evident in XW and P-limitation in DJK, leading to a mesotrophic status in both reservoirs; The stoichiometric ratio of carbon (C), nitrogen (N), and phosphorus (P) are the primary factors influencing the comprehensive trophic level index (TLI) of the reservoirs. This is attributed to the karst hydrochemical background and high weathering rates; Under different N and P limiting conditions, the trophic status is affected by various factors, with the C to P ratio-sensitive to rock weathering, climate change, and anthropogenic inputs-emerging as a key determinant of water quality; To optimize the evaluation indices for assessing the trophic state and managing water quality in karst reservoirs under diverse hydrological conditions and functional roles, it is essential to analyze the effects of water chemical characteristics and stoichiometric ratios of biogenic elements on trophic status based on the analysis of nutrient limitations in water bodies.
付陈乐, 康满春, 孟江槐, 刘佳, 刘流, 龙良红, 肖尚斌. 典型喀斯特水库水化学特征及水体营养状态影响因素研究[J]. 中国环境科学, 2025, 45(3): 1483-1495.
FU Chen-le, KANG Man-chun, MENG Jiang-huai, LIU Jia, LIU liu, LONG Liang-hong, XIAO Shang-bin. Study of hydro-chemical characteristics and influencing factors of the tropic status in typical karst reservoirs. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(3): 1483-1495.
[1] Brennan S T, Lowenstein T K. The major-ion composition of Silurian seawater[J]. Geochimica et Cosmochimica Acta, 2002,66(15):2683-2700. [2] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992,359(6391):117-122. [3] Zhai S J, Yang L, Hu W-p, et al. Atmospheric nitrogen and phosphorus deposition during optimal algal growth period in northern Lake Taihu[J]. Environ Pollut Control, 2009,31(4):5-10. [4] Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production:metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010,186(3):593-608. [5] 吴丰昌,金相灿,张润宇,等.论有机氮磷在湖泊水环境中的作用和重要性[J].湖泊科学, 2010,22(1):1-7. Wu F C, Jing X C, Zhang L Y, et al. Effects and significance of organic nitrogen and phosphorous in the lake aquatic environment[J]. Journal of Lake Sciences, 2010,22(1):1-7. [6] 叶琳琳,吴晓东,赵冬悦,等.崇明岛河网浮游植物和无机、有机氮的时空分布特征[J].湖泊科学, 2016,28(3):528-536. Ye L L, Wu X D, Zhao D Y, et al. Temporal and spatial distributions of phytoplankton and inorganic and organic nitrogen in Chongming Island[J]. Journal of Lake Sciences, 2016,28(3):528-536. [7] 蔡龙炎,李颖,郑子航.我国湖泊系统氮磷时空变化及对富营养化影响研究[J].地球与环境, 2010,38(2):235-241. Cai L Y, Li Y, Zheng Z H. Temporal and spatial distribution of nitrogen and phosphorus of lake systems in China and their impact on eutrophication[J]. Earth and Environment, 2010,38(2):235-241. [8] 柳星,贺海波,刘再华.水体CO2施肥及其碳增汇和富营养化缓解效应[J].第四纪研究, 2023,43(2):573-585. Liu X, He H B, Liu Z H. Effects of CO2 fertilization in aquatic ecosystems on the carbon sequestration and eutrophication mitigation[J]. Quaternary Sciences, 2023,43(2):573-585. [9] 刘再华.岩溶湖库生产力的溶解无机碳施肥及碳增汇和富营养化缓解效应[J].科学通报, 2023,68(8):915-926. Liu Z H. DIC fertilization of primary production in karst lake-reservoirs and its effects on carbon sequestration and mitigation of eutrophication (in Chinese)[J]. Chin. Sci. Bull., 2023,68:915-926. [10] 田立德,姚檀栋,沈永平,等.青藏高原那曲河流域降水及河流水体中氧稳定同位素研究[J].水科学进展, 2002,(2):206-210. Tian L D, Yao T D, Shen Y P, et al. Study on stable isotope in river water and precipitation in Naqu River basin Tibetan Plateau[J]. Advances in Water Science, 2002,(2):206-210. [11] Han Q, Wang B, Liu C Q, et al. Carbon biogeochemical cycle is enhanced by damming in a karst river[J]. Science of The Total Environment, 2018,616:1181-1189. [12] Wang W, Li S L, Zhong J, et al. Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019,574:193-201. [13] Grill G, Lehner B, Thieme M, et al. Mapping the world's free-flowing rivers[J]. Nature, 2019,569(7755):215-221. [14] Milliman J D. Blessed dams or damned dams?[J]. Nature, 1997,386(6623). [15] Topping D J, Rubin D M, Vierra Jr L. Colorado River sediment transport:1. Natural sediment supply limitation and the influence of Glen Canyon Dam[J]. Water Resources Research, 2000,36(2):515-542. [16] 张垒,李秋华,黄国佳,等.亚热带深水水库--龙滩水库季节性分层与富营养化特征分析环境科学[J].环境科学, 2015,36(2):438-447. Zhang L, Li Q H, Huang G J, et al. Seasonal stratification and eutrophication characteristics of a deep reservoir, Longtan Reservoir in subtropical area of China[J]. Environmental Science, 2015,36(2):438-447. [17] 谢理,杨浩,渠晓霞,等.滇池优势挺水植物茭草和芦苇降解过程中DOM释放特征研究[J].环境科学, 2013,34(9):3458-3466. Xie L, Yang H, Qu X X, et al. Dissolved organic matter release of zizania caduciflora and phragmites australis from Lake Dianchi[J]. Environmental Science, 2013,34(9):3458-3466. [18] García Chicote J, Armengol X, Rojo C. Zooplankton abundance:A neglected key element in the evaluation of reservoir water quality[J]. Limnologica, 2018,69:46-54. [19] 杜云彬,陈求稳,王智源,等.江苏省典型湖泊饮用水源地安全综合评价[J].水资源保护, 2020,36(5):71-78,92. Du Y B, Chen Q W, Wang Z Y, et al. Safety evaluation of typical lake drinking water sources in Jiangsu Province[J]. Water Resources Protection, 2020,36(5):71-78,92. [20] 肖胜生,房焕英,余小芳,等.壤中流驱动下可溶性有机碳迁移的研究进展[J].中国水土保持科学, 2020,18(3):155-161. Xiao S S, Fang H Y, Yu X F, et al. Advances of the migration of dissolved organic carbon driven by interflow[J]. Science of Soil and Water Conservation, 2020,18(3):155-161. [21] 李冰,李小辉,彭启轩,等.黄龙自然保护区喀斯特湖泊水色特征及其影响因素[J].应用与环境生物学报, 2022,28(5):1215-1224. Li B, Li X H, Peng Q X, et al. Characteristics of water color and its influencing factors in karst lakes of Huanglong Nature Reserve[J]. Chin. J. Appl. Environ. Biol., 2022,28(5):1215-1224. [22] Pliński M, Jóźwiak T. Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdańsk[J]. Oceanologia, 1999,(41(1)):73-80. [23] Mori T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations?[J]. Soil Biology Biochemistry, 2020,146:107816. [24] 刘敏,赵良元,李青云,等.长江源区主要河流水化学特征、主要离子来源[J].中国环境科学, 2021,41(3):1243-1254. Liu M, Zhao L Y, Li Q Y, et al. Hydrochemical characteristics, main ion sources of main rivers in the source region of Yangtze River[J]. China Environmental Science, 2021,41(3):1243-1254. [25] 刘佳驹,赵雨顺,黄香,等.雅鲁藏布江流域水化学时空变化及其控制因素[J].中国环境科学, 2018,38(11):4289-4297. Liu J J, Zhao Y S, Huang X, et al. Spatiotemporal variations of hydrochemistry and its controlling factors in the Yarlung Tsangpo River[J]. China Environmental Science, 2018,38(11):4289-4297. [26] 宋子豪,邹伟,桂智凡,等.我国常用湖泊营养状态指数研究进展与展望[J].湖泊科学, 2024,36(4):987-1001. Song Z H, Zou W, Gui Z F, et al. Common-uesd trophic level index in Chinese lakes:Progress and prospects[J]. Journal of Lake Sciences, 2024,36(4):987-1001. [27] 李丹,李黎,叶建庆.小湾水库影响区地震活动性探讨[J].中国地震, 2022,38(3):526-536. Li D, Li L, Ye J Q. Preliminary Study of the Seismicity around Xiaowan Reservoir, Yunnan, China[J]. Earthquake Research in China, 2022,38(3):526-536. [28] 梁雄兵,张中旺,谢海燕,等.南水北调中线工程水源地的主要环境问题分析[J].人民长江, 2005,(4):53-54,57-71. Liang X B, Zhang Z W, Xie H Y, et al. Analysis of main environment problems in water source area of the middle route project of S-N water transfer[J]. Yangtze River, 2005,(4):53-54,57-71. [29] 刘静思,朱晓声,胡子龙,等.不同水体分层对沉积物间隙水氮素垂向分布影响:以三峡水库和小湾水库为例[J].环境科学, 2020,41(8):3601-3611. Liu J S, Zu X S, Hu Z L, et al. Effects of different water stratification on the vertical distribution of nitrogen in sediment interstitial waters:A case study of the Three Gorges Reservoir and Xiaowan Reservoir[J]. Environmental Science, 2020,41(8):3601-3611. [30] 王丽,邱新法王培法,等.复杂地形下长江流域太阳总辐射的分布式模拟[J].地理学报, 2010,65(5):543-552. Wang L, Qiu X F, Wang P F, et al. Distributed modeling of global solar radiation of rugged terrain of the Yangtze River Basin[J]. Acta Geographira Sinica, 2010,65(5):543-552. [31] 肖春艳,武俐,赵同谦,等.南水北调中线源头区蓄水前土壤氮磷分布特征[J].中国环境科学, 2013,33(10):1814-1820. Xiao C Y, Wu L, Zhao T Q, et al. Distribution characteristics of nitrogen and phosphorous in soils from the middle line source area of the South-to-North Water Division Project[J]. China Environmental Science, 2013,33(10):1814-1820. [32] 何飞,陈正洪,孙朋杰,等.基于CLDAS辐射产品降尺度的县域太阳能资源精细化评估[J].气象与环境科学, 2023,46(6):49-58. He F, Chen Z H, Sun P J, et al. Refined assessment of county solar energy resources based on downscaling CLDAS radiation products[J]. Meteorological and Environmental Sciences, 2023,46(6):49-58. [33] 刘畅,刘晓波周怀东,等.水库缺氧区时空演化特征及驱动因素分析[J].水利学报, 2019,50(12):1479-1490. Liu C, Liu X N, Zhou H D, et al. Temporal and spatial evolution characteristics and driving factors of reservoir anoxic zone[J]. ShuiLi XueBao, 2019,50(12):1479-1490. [34] 王艳碧,周忠发,孔杰,等.基于水化学与氮氧同位素的喀斯特山区水体硝酸盐来源示踪与估算--以平寨水库为例[J].中国环境科学, 2023,43(10):5265-5276. Wang Y B, Zhou Z F, Kong J, et al. Tracing and estimation of nitrate sources based on hydrochemistry and nitrogen and oxygen isotopes in karst mountainous water:A case study of the Pingzhai reservoir[J]. China Environmental Science, 2023,43(10):5265-5276. [35] 王慎,张思思,许尤,等.不同水温分层水库沉积物间隙水营养盐垂向分布与细菌群落结构的关系[J].环境科学, 2019,40(6):2753-2763. Wang S, Zhang S S, Xu Y, et al. Relationship between the vertical distribution of nutrients and bacterial community structures in sediment interstitial waters of stratified reservoirs with different water temperatures[J]. Environmental Science, 2019,40(6):2753-2763. [36] 张清淼,郭晓明,金超,等.丹江口水库淅川库区大气降水中无机离子特征及来源解析[J].环境科学研究, 2022,35(12):2677-2684. Zhang Q M, Guo X M, Jing C, et al. Characteristics and source apportionment of inorganic ions in precipitation in Xichuan Area of Danjiangkou Reservoir[J]. Research of Environment Sciences, 2022, 35(12):2677-2684. [37] 吕婕梅,安艳玲,吴起鑫,等.清水江流域岩石风化特征及其碳汇效应[J].环境科学, 2016,37(12):4671-4679. Lü J M, An Y L, Wu Q X, et al. Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang River Basin[J]. Environmental Science, 2016,37(12):4671-4679. [38] 覃小群,蒋忠诚,张连凯,等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J].地质通报, 2015,34(9):1749-1757. Qin X Q, Jiang Z C, Zhang L K, et al. The difference of the weathering rate between carbonate rocks and sil icate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China, 2015,34(9):1749-1757. [39] 王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测, 2002,18(5):47-49. Wang M C, Liu X Q, Zhang J H, et al. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 2002,18(5):47-49. [40] Bergström, Ann-Kristin. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition[J]. Aquatic Sciences, 2010,72:277-281. [41] Noh H, Huh Y, Qin J, et al. Chemical weathering in the Three Rivers region of Eastern Tibet[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):1857-1877. [42] Sun H, Han J, Li D, et al. Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China[J]. Science of The Total Environment, 2010,408(20):4749-4760. [43] Li S, Lu X, Bush R T. Chemical weathering and CO2 consumption in the Lower Mekong River[J]. Science of the Total Environment, 2014, 472:162-177. [44] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159(1-4):3-30. [45] 张小薇,虞之锋,陈敏,等.典型喀斯特溪流水化学特征及碳汇通量研究[J].中国环境科学, 2023,43(2):648-657. Zhang X W, Yu Z F, Chen M, et al. Hydro-chemical characteristics and carbon sink fluxes of a typical karst stream[J]. China Environmental Science, 2023,43(2):648-657. [46] 肖茜,杨昆,洪亮.近30a云贵高原湖泊表面水体面积变化遥感监测与时空分析[J].湖泊科学, 2018,30(4):1083-1096. Xiao Q, Yang K, Hong L. Remote sensing monitoring and temporal-spatial analysis of surface water body area changes of lakes on the Yunnan-Guizhou Plateau over the past 30 years[J]. Joural of Lake Sciences, 2018,30(4):1083-1096. [47] Thomas J, Joseph S, Thrivikramji K, et al. Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India[J]. Environmental Earth Sciences, 2014,71:2333-2351. [48] 张涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学, 2017,38(11):4537-4545. Zhang T, Cai W T, Li Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017,38(11):4537-4545. [49] 吕婕梅,安艳玲,吴起鑫,等.贵州清水江流域丰水期水化学特征及离子来源分析[J].环境科学, 2015,36(5):1565-1572. Lü J M, An Y L, Wu Q X, et al. Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J]. Environmental Science, 2015,36(5):1565-1572. [50] 严宇鹏,牛凤霞,刘佳,等.雅鲁藏布江上游夏季水化学特征及来源解析[J].中国环境科学, 2022,42(2):815-825. Yan Y P, Niu F X, Liu J, et al. Hydrochemical characteristics and sources of the upper Yarlung Zangbo River in summer[J]. China Environmental Science, 2022,42(2):815-825. [51] 王万发,钟君,李彩,等.喀斯特地区梯级水库建造对水化学分布的影响[J].湖泊科学, 2020,32(3):713-725. Wang W F, Zhong J, Li C, et al. The influence of cascade reservoir construction on water chemistry distribution in karst area[J]. Journal of Lake Sciences, 2020,32(3):713-725. [52] King D L. The role of carbon in eutrophication[J]. Water Pollution Control Federation, 1970:2035-2051. [53] Kim H S, Hwang S J, Shin J K, et al. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir[J]. Hydrobiologia, 2007,(1):255-267. [54] 田永杰,唐志坚,李世斌.我国湖泊富营养化的现状和治理对策[J].环境科学与管理, 2006,(5):119-121. Tian Y J, Tang Z J, Li S B, et al. Present of eutraphication of our countrys lakes and control measures[J]. Environmental science and mangement, 2006,(5):119-121. [55] Chen H, Li D, Xiao K, et al. Soil microbial processes and resource limitation in karst and non-karst forests[J]. Functional Ecology, 2018,32(5):1400-1409. [56] Zhang Z H, Hu G, Ni J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China[J]. Journal of Mountain Science, 2013,10:95-104. [57] Kamp A, Høgslund S, Risgaard-Petersen N, et al. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes.[J]. Frontiers in microbiology, 2015,(6):1492. [58] Zaccone R, Caruso G, Calı C. Heterotrophic bacteria in the northern Adriatic Sea:seasonal changes and ectoenzyme profile[J]. Marine Environmental Research, 2002,54(1):1-19. [59] 冯胜,秦伯强,高光.太湖磷转化细菌与水体磷形态关系[J].湖泊科学, 2008,(4):428-436. Feng S, Qin B Q, Gao G. The relationships between phosphorus-transmuting bacteria and phosphorus forms in Lake Taihu[J]. Journal of Lake Sciences, 2008,(4):428-436.