Surface water and undergroundwater were collected from the eastern part of Qilian Mountains (Wushaoling, Gulang, Tianzhu) from May to September, 2016~2017. Water chemical analysis, statistical analysis, Piper three-line diagram, Gibbs diagram and ion ratio were used to explore the main ion composition, source and temporal & spatial variation of surface water and undergroundwater in the area. The result shows that the main cations of theeastern part of the surface water and undergroundwater in Qilian Mountainsare Ca2+ and Na+. The average concentration of Ca2+ is 76.897mg/L, accounting for 73.89%.AndNa+ is 16.592mg/L, accounting for 15.94%. The dominant anions are HCO3- and SO42-. The concentration of HCO3- is 190.117mg/L, accounting for 68.71%. SO42- is 67.565mg/L, accounting for 24.42%. The water hydrochemistry type is HCO3--Ca2+ concerning Wushaoling River water, Wushaoling undergroundwater, Tianzhu riverand Tianzhuunderground water.In the light of Gulangriver water and its underground water, the type is HCO3--Ca2+-Mg2+. Ions ofdifferent waters are from rock weathering, meanwhile affected by carbonate and silicate weathering and dissolution combined, and human activity is alsocontributed. The time-varying characteristics of the main ions concentration in different water bodies are different.In general, the ions concentration of most water bodies does not change significantly with time, and the overall trend is relatively flat.
曹晏风, 张明军, 瞿德业, 王圣杰, 邱雪, 马转转, 杜勤勤, 车存伟. 祁连山东端地表及地下水水化学时空变化特征[J]. 中国环境科学, 2020, 40(4): 1667-1676.
CAO Yan-feng, ZHANG Ming-jun, QU De-ye, WANG Sheng-jie, QIU Xue, MA Zhuan-zhuan, DU Qin-qin, CHE Cun-wei. Temporal-spatial variation of surface and undergroundwater chemistry in the eastern part of Qilian Mountains. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(4): 1667-1676.
GaillardetJ, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159(1-4):3-30.
[2]
Li S, Lu X X, He M, et al. Major element chemistry in the upper Yangtze River:A case study of the Longchuanjiang River[J]. Geomorphology, 2011,129(1/2):29-42.
[3]
Pant R R, Zhang F, Rehman F U, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal[J]. Science of the Total Environment, 2018,622:770-782.
[4]
李甜甜,季宏兵,江用彬,等.赣江上游河流水化学的影响因素及DIC来源[J]. 地理学报, 2007,62(7):764-775. LI T T, JI H B, JIANG Y B, et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River[J]. Acta Geographica Sinica, 2007,62(7):764-775.
[5]
宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学:地球科学, 2007,37(1):102-110. Song X F, Liu X C, Xia J, et al. Research on the Relationship between surface water and groundwater transformation in Huaisha River Basin based on environmental isotope technology[J]. Scientia Sinica Terrae, 2007,37(1):102-110.
[6]
孔晓乐,王仕琴,丁飞,等.基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J]. 环境科学, 2018,39(6):122-129. Kong X L, Wang S Q, Din F, et al. Source of nitrate in surface water and shallow groundwater around Baiyangdian Lake Area based on hydrochemical and stable isotopes[J]. Environmental Science, 2018,39(6):122-129.
[7]
朱国锋,潘汉雄,张昱,等.石羊河流域多水体酸根离子特征及影响因素[J]. 中国环境科学, 2018,38(5):288-294. Zhu G F, Pan H X, Zhang Y, et al. Hydrochemieal characteristics and control factors of acid anion in Shiyang River Basin[J]. China Environmental Sience, 2018,38(5):288-294.
[8]
Pant R R, Zhang F, Rehman F U, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal[J]. Science of the Total Environment, 2018,622:770-782.
[9]
Galy A, France-Lanord C. Weathering processes in the Ganges-Brahmaputra Basin and the riverine alkalinity budget[J]. Chemical Geology, 1999,159(1-4):31-60.
[10]
Ahmad T, Khanna P P, Chakrapani G J, et al. Geochemical characteristics of water and sediment of the Indus River, Trans-Himalaya, India:constraints on weathering and erosion[J]. Journal of Asian Earth Sciences, 1998,16(2/3):333-346.
[11]
Sharif M U, Davis R K, Steele K F, et al. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)[J]. Journal of Hydrology, 2008,350(1/2):41-55.
[12]
Dekov V M, Komy Z, Araujo F, et al. Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse)[J]. Science of the Total Environment, 1997, 201(3):195-210.
[13]
Huang X, Sillanpää M, Gjessing E T, et al. Water quality in the Tibetan Plateau:major ions and trace elements in the headwaters of four major Asian rivers[J]. Science of the Total Environment, 2009,407(24):6242-6254.
[14]
乐嘉祥,王德春.中国河流水化学特征[J]. 地理学报, 1963,30(1):3-15. Le J X, Wang D C. Hydrochemical characteristics of rivers in China[J]. Acta Geographica Sinica, 1963,30(1):3-15.
[15]
张祖陆,彭利民.莱州湾东、南沿岸海(咸)水入侵的地下水水化学特征[J]. 中国环境科学, 1998,18(2):121-125. Zahng Z L, Peng L M. The underground water hydrochemical characteristics on sea water intruded in eastern and southern coasts of Laizhou Bay[J]. China Environmental Science, 1998,18(2):121-125.
[16]
傅雪梅,孙源媛,苏婧,等.基于水化学和氮氧双同位素的地下水硝酸盐源解析[J]. 中国环境科学, 2019,39(9):3951-3958. Fu X M, Sun Y Y, Su J, et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J]. China Environmental Science, 2019,(9):3951-3958.
[17]
何姜毅,张东,赵志琦.黄河流域河水水化学组成的时间和空间变化特征[J]. 生态学杂志, 2017,36(5):1390-1401. He J Y, Zhang D, Zhao Z Q. Temporal and spatial variations of hydrochemical composition of river water in the Yellow River Basin[J]. Chinese Journal of Ecology, 2017,36(5):1390-1401.
[18]
陈静生,王飞越,夏星辉.长江水质地球化学[J]. 地学前缘, 2006, 13(1):74-85. Chen J S, Wang F Y, Xia X H. Yangtze River Water Quality Geochemistry[J]. Earth Science Frontiers, 2006,13(1):74-85.
[19]
孙海龙,刘再华,杨睿,等.珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义[J]. 地球与环境, 2017,45(1):57-65. Sun H L, Liu Z H, Yang R, et al. Significance of temporal and spatial variation characteristics of water chemical composition and the department of the Pearl River Basin estimates of carbon rock wind[J]. Earth and Environment, 2017,45(1):57-65.
[20]
吴起鑫,韩贵琳,李富山,等.珠江源区南、北盘江丰水期水化学组成特征及来源分析[J]. 环境化学, 2015,34(7):1289-1296. Wu Q X, Han G L, Li F S, et al. Characteristics of hydrochemical composition and source analysis of the South and North Panjiang Rivers in the Source Area of the Pearl River[J]. Environmental Chemistry, 2015,34(7):1289-1296.
[21]
马阔,吴起鑫,韩贵琳,等.南、北盘江流域枯水期水化学特征及离子来源分析[J]. 中国岩溶, 2018,37(2):36-46. Ma K, Wu Q X, Han G L, et al. Hydrochemical characteristics and sources of Nanpanjiang and Beipanjiang river basins during dry seasons[J]. Carsologica Sinica, 2018,37(2):36-46.
[22]
徐森,李思亮,钟君,等.赤水河流域水化学特征与岩石风化机制[J]. 生态学杂志, 2018,37(3):667-678. Xu S, Li S L, Zhong J, et al. Hydrochemical characteristics and chemical weathering processes in Chishui River Basin[J]. Chinese Journal of Ecology, 2018,37(3):667-678.
[23]
李晓强,韩贵琳,董爱国,等.九龙江丰水期水化学组成特征及其控制因素[J]. 生态学杂志, 2018,37(3):697-706. Li X Q, Han G L, Dong A G, et al. Hydrogeochemical characteristics and controlling factors in Jiulong River (Fujian Province) during the flood season[J]. Chinese Journal of Ecology, 2018,37(3):697-706.
[24]
郜银梁,陈军锋,张成才,等.黑河中游灌区水化学空间变异特征[J]. 干旱区地理, 2011,34(4):575-583. Gao Y L, Chen J F, Zhang C C, et al. Hydrochemical characteristics of the irrigation area in the middle reaches of the Heihe River Basin[J]. Arid Land Geography, 2011,34(4):575-583.
[25]
周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014,35(9):3315-3324. Zhou J X, Ding Y J, Zeng G X, et al. Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls[J]. Environmental Science, 2014,35(9):3315-3324.
[26]
朱世丹,张飞,张海威.艾比湖流域河流水化学季节特征及空间格局研究[J]. 环境科学学报, 2018,38(3):892-899. Zhu S D, Zhang F, Zhang H W. et al. The seasonal and spatial variations of water chemistry of rivers in Ebinur Lake Basin[J]. Acta Scientiae Circumstantiae, 2018,38(3):892-899.
[27]
韩知明,贾克力,孙标,等.呼伦湖流域地表水与地下水离子组成特征及来源分析[J]. 生态环境学报, 2018,27(4):744-751. Han Z M, Jia K L, Sun B, et al. Component characteristics and sources of ions in surface water and groundwater of Hulun Lake Basin[J]. Ecology and Environmental Sciences, 2018,27(4):744-751.
[28]
胡春华,周文斌,夏思奇.鄱阳湖流域水化学主离子特征及其来源分析[J]. 环境化学, 2011,30(9):1620-1626. Hu C H, Zhou W B, Xia S Q. Characteristics of hydrochemical principal ions and the influence factors in Poyang Lake Basin[J]. Environmental Chemistry, 2011,30(9):1620-1626.
[29]
侯昭华,徐海,安芷生.青海湖流域水化学主离子特征及控制因素初探[J]. 地球与环境, 2009,37(1):11-19. Hou Z H, Xu H, An Z S. Major ion chemistry of waters in Lake Qinghai Basin and the possible controls[J]. Earth and Environment, 2009,37(1):11-19.
[30]
蔡月,李小平,赵亚楠,等.蒙陕大型煤矿开采区水质化学特征与健康风险[J]. 生态学杂志, 2018,37(2):482-491. Cai Y, Li X P, Zhao Y N, et al. Chemical characteristics and health risk assessment of groundwater from large coal-mining area in Shaanxi and Inner Mongolia of China[J]. Chinese Journal of Ecology, 2018,37(2):482-491.
[31]
叶慧君,张瑞雪,吴攀,等.安徽淮北临涣矿区地表水水化学及硫氢氧同位素组成特征[J]. 地球科学, 2019,doi:10.14050/j.cnki.1672-9250.2019.47.039. Ye H J, Zhang R X, Wu P, et al. Surface water hydrochemistry and sulfur, hydrogen and oxygen isotopic composition characteristics in Linhuan mining area, Huaibei, Anhui[J]. Earth Science, 2019,doi:10.14050/j.cnki.1672-9250.2019.47.039.
[32]
王涛,高峰,王宝,等.祁连山生态保护与修复的现状问题与建议[J]. 冰川冻土, 2017,39(2):229-234. Wang T, Gao F, Wang B, et al. Status quo and suggestions on Ecological Protection and Restoration of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2017,39(2):229-234.
[33]
黄增保,李葆华,刘明强,等.甘肃天祝地区乌鞘岭一带双峰式火山岩的发现及其构造环境[J]. 地质通报, 2011,31(9):1374-1381. Huang Z B, Li B H, Liu M Q, et al. The discovery of bimodal volcanic rocks in Wuqiaoling area of Tianzhu County, Gansu Province, and its tectonic setting[J]. Geologcal Bulletin of China, 2011,31(9):1374-1381.
[34]
汪双双,刘明强,柳益群,等.北祁连乌鞘岭蛇绿混杂岩地球化学特征及其构造环境[J]. 地质与勘探, 2012,48(5):1000-1008. Wang S S, Liu M Q, Liu Y Q, et al. Geochemical features and tectonic setting of the Wushaoling Ophiolite Melanges, North Qilian Mountains[J]. Geology and Exploration, 2012,48(5):1000-1008.
[35]
李学礼,孙占学,刘金辉.水文地球化学[M]. 北京:原子能出版社, 1982:20-21. Li X L, San Z X, Liu J H. Hydrogeochemistry[M]. Beijing:Atomic Energy Press, 1982:20-21.
[36]
Mogheir Y, Singh V P, de Lima J. Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine[J]. Hydrogeology Journal, 2006,14(5):700-712.
[37]
Ma H, Zhu G, Zhang Y, et al. The effects of runoff on hydrochemistry in the Qilian Mountains:a case study of Xiying River Basin[J]. Environmental Earth Sciences, 2019,78(13):385.
[38]
李宗省,冯起,李宗杰,等.祁连山北坡稳定同位素生态水文学研究的初步进展与成果应用[J/OL]. 冰川冻土:http://kns.cnki.net/kcms/detail/62.1072.P.20190916.1055.002.html. Li Z X, Feng Q, Li Z J, et al. Preliminary progress and application of stable isotope ecohydrology on the North Slope of Qilian Mountains[J/OL]. Journal of Glaciology and Geocryology:http://kns.cnki.net/kcms/detail/62.1072.P.20190916.1055.002.html.
[39]
郑永山.石羊河流域地下水埋深时空变化研究[J]. 地下水, 2017, 39(4):60-61. Zheng Y S. Temporal and spatial variation of groundwater depth in Shiyang River Basin[J]. Groundwater, 2017,39(4):60-61.
[40]
Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944,25(6):914-928.
[41]
Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes:evidence from major ions, δ13C, DIC, and δ34S, SO42- in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005,69(23):5441-5458.
[42]
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970,170(3962):1088-1090.
[43]
Meybeck M. Global occurrence of major elements in rivers[J]. Treatise on geochemistry, 2003,5(1):207-223.
[44]
杜文越,何若雪,何师意,等.桂江上游水化学特征变化及离子来源分析:以桂林断面为例[J]. 中国岩溶, 2017,36(2):207-214. Du W Y, H E R X, H E S Y, et al. Variation of hydrochemical characteristics and the ion source in the upstream of Guijiangriver:A case study in Guilin section[J]. Carsologica Sinica, 2017,36(2):207-214.
[45]
贾文雄,李宗省.祁连山东段降水的水化学特征及离子来源研究[J]. 环境科学, 2016,37(9):3323-3332. Jia W X, Li Z X. Hydrochemical characteristics and sources of ions in precipitation at the East Qilian Mountains[J]. Environmental Science, 2016,37(9):3323-3332.
[46]
韩丹蕊,孙启忠.呼伦贝尔草原牧草青贮饲料硝酸盐与亚硝酸盐含量研究[J]. 草地学报, 2014,22(6):1360-1364. Han D R, Sun Q Z. Nitrate and nitrite contents of forage silages from Hulunbuir Grassland[J]. Acta Agrestia Sinica, 2014,22(6):1360-1364.
[47]
蒋辉.环境水化学[M]. 北京:化学工业出版社, 2003:144-175. Jiang H. Environmental water chemistry[M]. Beijing:Chemical Industry Press, 2003:144-175.