Distribution characteristics and influencing factors of RIS in Quaternary sediments in the middle and lower reaches of Chaobai alluvial-proluvial fan, in Beijing
CHEN Ji-ji1,2, JING Hong-wei1,2, SHEN Xiu-e1,2, GUO Jing1,2, YANG Qing3, XI Yue1,2, XU Su-shi1,2, GUO Hua-ming4, GAO Zhi-peng4, TAO Lei1,2
1. Beijing Municipal Ecological and Environment Monitoring Center, Beijing 100048, China; 2. State Environmental Protection Key Laboratory of All Materials Flux in Rivers, Beijing 100871, China; 3. Beijing Geological Environment Monitoring Institute, Beijing 100195, China; 4. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
Abstract:Based on core sampling, sequential extraction procedure in the laboratory, correlation analysis between sediments and groundwater, and mineral saturation index (SI) of groundwater, this paper explored the distribution, form and influencing factors of RIS in Quaternary sediments in the middle and lower reaches of Chaobai alluvial-proluvial fan, in Beijing. Results showed that the content of RIS in the study area followed a descending order of: Pyrite-S (CRS) > essential sulfur (ES) > acid volatile sulfide (AVS), among which CRS accounting for 80.1%, ES and AVS accounting for 13.4% and 5.56% respectively. 67% of samples had CRS/AVS value higher than 3. The RIS content in sediments in the upper reaches was lower than that in the lower reaches, and RIS contents in the four aquifers from shallow to deep were 84.3, 37.4, 39.1 and 10.5mg/kg respectively, showing an overall decreasing trend. The results of RDA and correlation analysis indicated that the TOC content, CRS/AVS value and water content in sediments were crucial factors affecting the content and form of RIS in the study area. Specifically, the content of RIS was also affected by the groundwater pH value, iron/sulfur ratio and hydrogeological conditions, and the form of RIS was affected by the CODMn and ORP of groundwater. The SI value of FeS in groundwater fluctuated around 0, and the SI value of FeS2>0. In summary, RIS in the sediments of the study area is basically unaffected by human disturbance, and the activity and bioavailability of sulfide are low. The sediments may affect the concentrations of sulfate, sulfide, iron and arsenic in groundwater mainly through AVS precipitation/dissolution and ES disproportionation reaction.
陈吉吉, 荆红卫, 沈秀娥, 郭婧, 杨庆, 席玥, 徐蘇士, 郭华明, 高志鹏, 陶蕾. 北京潮白河中下游第四系沉积物还原性无机硫分布特征及其影响因素[J]. 中国环境科学, 2025, 45(5): 2735-2744.
CHEN Ji-ji, JING Hong-wei, SHEN Xiu-e, GUO Jing, YANG Qing, XI Yue, XU Su-shi, GUO Hua-ming, GAO Zhi-peng, TAO Lei. Distribution characteristics and influencing factors of RIS in Quaternary sediments in the middle and lower reaches of Chaobai alluvial-proluvial fan, in Beijing. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(5): 2735-2744.
[1] 王禹厶.北大港湿地沉积物硫形态分布研究[J].价值工程, 2023, 42(4):149-151. Wang Y S. Study on sulfur speciation distribution in sediments of Beidagang wetland[J]. Value Engineering, 2023,42(4):149-151. [2] 中华人民共和国生态环境部.中国生态环境状况公报[R]. 2022. Ministry of Ecology and Environment of the People's Republic of China. China ecological environment status bulletin[R]. 2022. [3] 柴成繁,邢恩文,李泰,等.天津市地下水监测井硫化物超标规律与成因分析[J].海河水利, 2023,(12):32-36. Chai C F, Xing E W, Li T, et al. Regularity exceeded and cause of sulfide in groundwater monitoring wells in Tianjin[J]. Haihe Water Resources, 2023,(12):32-36. [4] 李松,余居华,王丽,等.九龙江流域丰水期表层沉积物还原性无机硫分布特征及其水库驱动机制[J].环境科学学报, 2023,43(11): 125-133. Li S, Yu J H, Wand L, et al. Distribution patterns of reduced inorganic sulfur in surface sediments and its reservoir driving mechanism during the flooding season in Jiulong River, China[J]. Acta Scientiae Circumstantiae, 2023,43(11):125-133. [5] 毛立,孙志高,李亚瑾,等.闽江福州段湿地沉积物无机硫沿程分布特征及其影响因素[J].环境科学学报, 2023,43(4):467-477. Mao L, Sun Z G, LI Y J, et al. Spatial distribution of inorganic sulfur and its key influencing factors in wetland sediments in Fuzhou reach of the Min River[J]. Acta Scientiae Circumstantiae, 2023,43(4): 467-477. [6] 陈波,覃子东,王峰,等.滨海酸性硫酸盐土壤湿地沉积物中还原性无机硫和活性铁的耦合特性及环境意义[J].热带海洋学报, 2023,42(5):45-55. Chen B, Qin Z D, Wang F, et al. Coupling characteristics of reduced inorganic sulfur and reactive iron in coastal acidic sulfate soil wetland and its environmental significance[J]. Journal of Tropical Oceanography, 2023,42(5):45-55. [7] 杨云斐,杨继松,刘学,等.黄河口沼泽土壤中三种形态还原性无机硫含量及其影响因素研究[J].湿地科学, 2022,20(2):205-215. Yang Y F, Yang J S, Liu X, et al. Contents of three forms of reduced inorganic sulfur in soil in marshes of the Yellow River estuary and their influencing factors[J]. Wetland Science, 2022,20(2):205-215. [8] Lin Q, Wang J S, Fu S Y, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China Earth Sciences, 2015,58(12):2271-2278. [9] 姜明,赵国强,李兆冉,等.烟台夹河口外柱状沉积物还原性无机硫、活性铁的变化特征及其相互关系[J].海洋科学, 2018,42(8): 90-97. Jiang M, Zhao G Q, Li Z R, et al. Distribution characteristics and relationship between reduced inorganic sulfur and reactive iron in core sediments outside the mouth of the Jiahe River in Yantai[J]. Marine Sciences, 2018,42(8):90-97. [10] 陈茜,宁成武,汪杰,等.巢湖沉积物磷铁硫形态记录及其环境变化指示[J].中国环境科学, 2021,41(6):2853-2861. Chen X, Ning C W, Wang J, et al. Fractions of phosphorus, iron and sulfur in lake sediments of Chaohu and its implication for environmental changes[J]. China Environmental Science, 2021,41(6): 2853-2861. [11] 王耀,茅昌平,贾志敏,等.三峡库区沉积物还原性无机硫形态的分布特征,控制因素及对内源磷释放的影响[J].湖泊科学, 2023, 35(2):460-472. Wang Y, Mao C P, Jia Z M, et al. Distribution characteristics and controlling factors of reduced inorganic sulfur forms in Three Gorges Reservoir sediment and its influence on the release of endogenous phos phorus[J]. Journal of Lake Sciences, 2023,35(2):460-472. [12] 郭高轩,侯泉林,许亮,等.北京潮白河冲洪积扇地下水水化学的分层分带特征[J].地球学报, 2014,35(2):204-210. Guo G X, Hou Q L, Xu L, et al. Delamination and zoning characteristics of quaternary groundwater in Chaobai Alluvialproluvial Fan, Beijing, based on hydrochemical ana1ysis[J]. Acta Geoscientica Sinica, 2014,35(2):204-210. [13] 雷坤超.南水北调前后北京平原区地下水和地面沉降演变特征[J].地质学报, 2024,98(2):591-610. Lei K C. Characteristics of groundwater and land subsidence evolution before and after the South-to-North Water Diversion Project in Beijing, China[J]. Acta Geologica Sinica, 2024,98(2):591-610. [14] 杨巧凤,徐庆勇,江岳,等.《北京市平原区地下水环境监测网运2023年年度报告》[R].北京:北京市水文地质工程地质大队, 2023. Yang Q F, Xu Q Y, Jiang Y, et al. Annual report of Beijing plain area groundwater environment monitoring network 2023[R]. Beijing: Beijing Hydrogeology Engineering Geology Group, 2023. [15] 陈吉吉,陶蕾,席玥,等.北京潮白河冲洪积扇中下游地下水铁锰来源解析及成因分析[J].中国环境科学, 2024,44(9):5016-5025. Chen J J, Tao L, Xi Y, et al. Quantitative source apportionment and origin analysis of Fe and Mn in the middle and lower reaches groundwater of Chaobai alluvial-proluvial fan, Beijing[J]. China Environmental Science, 2024,44(9):5016-5025. [16] 陈吉吉,陶蕾,刘保献,等.北京市平原区地下水铁锰分布特征及成因分析[J].水文地质工程地质, 2024,51(6):198-207. Chen J J, Tao L, Liu B X, et al. Distribution characteristics and origin analysis of iron and manganese in groundwater in Beijing Plain Area[J]. Hydrogeology& Engineering Geology, 2024,51(6):198-207. [17] HJ164-2020地下水环境监测技术规范[S]. HJ164-2020 Technical specification for groundwater environmental monitoring[S]. [18] GB/T14848-2017地下水质量标准[S]. GB/T 14848-2017 Groundwater quality standard[S]. [19] 肖勇,莫培,尹世洋,等.北京南郊平原地下水化学特征及成因分析[J].环境工程, 2021,39(8):99-107. Xiao Y, Mo P, Yin S Y, et al. Hydrochemical characteristics and genesis of groundwater in southern suburb of Beijing plain[J]. Environmental Engineering, 2021,39(8):99-107. [20] 温家声.海南滨海水体沉积物无机硫形态特征及对重金属生态风险影响研究[D].广州:华南理工大学, 2017. Wen J S. Research on characteristics of reduced inorganic sulfur species and its influence on ecological risk of heavy metals in sediments of coastal waters of hainan province[D]. Guangzhou: South China University of Technology, 2017. [21] 张磊,张晓亮,白凌燕,等.北京平原沙河凹陷第四纪磁性地层学研究及其新构造运动的沉积响应[J].中国地质, 2016,43(3):1076- 1084. Zhang L, Zhang X L, Bai L Y, et al. Research of quaternary magnetic stratigraphy and its sedimentary response of new tectonic movement in Shahe depression Beijing plain area[J]. Geology in China, 2016,43(3): 1076-1084. [22] 朱瑾灿,吴雨琛,尹洪斌.太湖蓝藻聚集区沉积物硫形态的时空变异特征[J].中国环境科学, 2017,37(12):4690-4700. Zhu J C, Wu Y C, Yin H B. Temporal and spatial variations of sulfur speciations in the sediments of algae accumulation area in Lake Taihu[J]. China Environmental Science, 2017,37(12):4690-4700. [23] Chen Y Q, Shen L L, Huang T, et al. Transformation of sulfur species in lake sediments at Ardley Island and Fildes Peninsula, King George Island, Antarctic Peninsula[J]. Science of the Total Environment, 2020,702(2):135591.1-135591.7. [24] 陈源清.南极湖泊沉积物硫形态转化及其对微量重金属生物有效性的影响[D].合肥:安徽大学, 2020. Chen Y Q. Transformation of sulfur species and its effects on the trace heavy metals bioavailability in Antarctic lake sediments[D]. Hefei: Anhui University, 2020. [25] Smith R L, Klug M J. Reduction of sulfur compounds in the sediments of a eutrophic lake basin[J]. Applied and Environmental Microbiology, 1981,41(5):1230-1237. [26] Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005,97(3/4):141-197. [27] Gagnon C, Mucci A. Pelletier Anomalous accumulation of acidvolatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada[J]. Geochimica Et Cosmochimica Acta, 1995,59(13):2663- 2675. [28] 唐文忠,许清峰,张洪,等.沉积物中硫循环关键过程及其与重金属/磷耦合关系研究进展[J].环境科学学报, 2024,44(1):1-14. Tang W Z, Xu Q F, Zhang H, et al. Key processes of sulfur cycle in the sediment and its coupling relationship with heavy metals and phosphorus[J]. Acta Scientiae Circumstantiae, 2024,44(1):1-14. [29] 田飞翔,郑天亮,李琦,等.江汉平原第四系沉积物中砷的垂向分布规律及其对地下水中砷浓度的影响[J].地质科技情报, 2018,37(3): 226-234. Tian F X, Zheng T L, Li Q, et al. Vertical distribution of arsenic in quaternary sediments and its impacts on arsenic content in multi-level aquifers from Jianghan Plain[J]. Geological Science and Technology Information, 2018,37(3):226-234. [30] Guo H M, Zhou Y Z, Jia Y F, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the Western Hetao Basin, China: Evidence from multiple isotope approaches[J]. Environmental Science& Technology, 2016,50(23):12650-12659. [31] 易曼玲,李义连,华骏,等.铁硫化物对高砷地下水中As () Ⅲ的去除效果研究[J].安全与环境工程, 2021,28(2):213-219. Yi M L, Li Y L, Hua J, et al. Effect of iron-sulphide on the removal of As (Ⅲ) from high-arsenic groundwater[J]. Safety and Environmental Engineering, 2021,28(2):213-219. [32] Shi W X, Wu W W, Zeng X C, et al. Dissimilatory arsenate-respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate[J]. Ecotoxicology, 2018,27(8):1437-1441. [33] 梅俊凤.长江口湿地围垦区土壤水稻系统砷行为的Fe/S循环影响特征[D].上海:华东师范大学, 2022. Mei J F. Effects of Fe/S cycling on arsenic behavior in soil-rice system in wetland reclamation areas of the Yangtze Estuary[D]. Shanghai: East China Normal University, 2022. [34] 孙清清,陈敬安,王敬富,等.阿哈水库沉积物-水界面磷、铁、硫高分辨率空间分布特征[J].环境科学, 2017,38(7):2811-2818. Sun Q Q, Chen J A, Wang J F, et al. High-resolution distribution characteristics of phosphorous, iron and sulfur across the sedimentwater interface of Aha Reservoir[J]. Environmental Science, 2017, 38(7):2811-2818. [35] 杨艳,刘贺,罗勇,等.北京东部地区地面沉降发育特征分析[J].上海国土资源, 2021,42(1):7-12. Yang Y, Liu H, Luo Y, et al. Development characteristics of land subsidence in eastern Beijing[J]. Shanghai Land& Resources, 2021,42(1):7-12.