In order to explore the regional differences of the nitrogen-fixing bacteria in lakes of cold-arid areas, the nitrogen-fixing bacteria in the sediments of Nanhai Lake and the interaction relationship between the bacteria and the environmental factors were analyzed using the nitrogen-fixing bacteria specific functional gene nif H. The results demonstated that there existed differences in the composition of the dominant nitrogen-fixing bacterial community among various parts of the Lake, with the dominant bacterial community being mainly composed of 3 phyla (Cyanobacteria, Firmicutes and Proteobacteria) and 10 genera (Cyanobacteria, Chromatium, Clostridium, Anabaena, Rhodospirillum, Anaeromyxobacter, Thiocapsa, Cylindrospermopsis, Rhizobium and Pseudomonas). And Cyanobacteria turned out to be the leading bacteria at the phyla level due to the specific environmental conditions of the cold-arid areas like, the long freezing period and strong ultraviolet radiation. Based on the redundancy analysis, a high level of C/N and TP was shown to be the necessary nutrients for the survival of the nitrogen-fixing bacteria by speeding up the nitrogen-fixing reactions therein, while high levels of TN and NH3-N, and low pH values could inhibit the growth of nitrogen-fixing bacteria in the surface sediments. To be precise, a high pH value would inhibit the growth of Anabaena, Thiocapsa, Cyanobacteria and Rhodospirillum. In this essay, the potential function of the nitrogen fixation was studied by exploring the distributions of nitrogen-fixing microorganisms in the sediments of cold-arid areas, which could better explain the important role that the nitrogen-fixing microorganisms play in the nitrogen cycle.
杨文焕, 张元, 王志超, 石大钧, 李卫平. 寒旱区湖泊沉积物中固氮微生物群落特征——以包头南海湖为例[J]. 中国环境科学, 2020, 40(6): 2674-2682.
YANG Wen-huan, ZHANG Yuan, WANG Zhi-chao, SHI Da-jun, LI Wei-ping. Community characteristics of nitrogen-fixing microorganisms in lake sediment—taking Nanhaihu lake as example. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(6): 2674-2682.
Schindler D W.Eutrophication and recovery in experimental lakes: Implications for lake management [J].Science, 1974,184(4139): 897-899.
[2]
Conley D J, Humborg C, R ahmL et al.Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry [J].Environmental science and technology, 2002,36(24):5315-20.
[3]
吴玲.太湖沉积物中硝化作用及硝化微生物的分布与活性研究[D].南京:南京师范大学, 2018. Wu L.Study on nitrification and distribution and activity of nitrifying microorganisms in Taihu lake sediments [D].Nanjing, Jiangsu province: Nanjing Normal University, 2018.
[4]
杨文焕,石大钧,张元,等.高原湖泊沉积物中反硝化微生物的群落特征[J].中国环境科学, 2020,40(1):431-438. Yang W H, Shi D J, Zhang Y, et al.Community characteristics of denitrifying microorganisms in plateau lake sediments [J].China Environmental Science, 2020,40(1):431-438.
[5]
Zhu W J, Wang C, Sun F Q, et al.Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary [J].Marine Pollution Bulletin, 2018,126:540-548.
[6]
Blaud A, van der Zaan.B, Menona M, et al.The abundance of nitrogen cycle genes and potential greenhouse gas ?uxes depends on land use type and little on soil aggregate size [J].Applied Soil Ecology, 2017,125:1-11.
[7]
Yu Z, Zhou J, Yang J, et al.Vertical distribution of diazotrophic bacterial community associated with temperature and oxygen gradients in a subtropical reservoir [J].Hydrobiologia, 2014,741(1):69-77.
[8]
Schindler M.Evolution of phosphorus limitation in lakes [J].Science, 1977,195(4275):260-2.
[9]
Temponeras M, Kristiansen J, Moustaka-Gouni E.Seasonal variation in phytoplankton composition and physicl-chemical features of the shallow lake Doirani, Macedonia, Greece [J].Hydrobiologia, 2000, 424(1):109-122.
[10]
张民,阳振,史小丽.太湖蓝藻水华的扩张与驱动因素[J].湖泊科学, 2019,31(2):336-344. Zhang M, Yang Z, Shi X L.Expansion and drivers of cyanobacterial blooms in Lake Taihu [J].Journal of Lake Sciences, 2019,31(2): 336-344.
[11]
杭鑫,李心怡,谢小萍,等.基于通径分析法的太湖蓝藻水华定量气象评估模型[J].湖泊科学, 2019,31(2):345-354. Hang X, Li X Y, XIE X P, et al.The quantitative meteorological evaluation model of cyanobacterial bloom in Lake Taihu based on path analysis [J].Journal of Lake Sciences, 2019,31(2):345-354.
[12]
赵磊,刘慧.江汉油田波动带土壤氮循环功能菌群分析[J].环境科学与技术, 2018,41(11):49-53. Zhao L, Liu H.Analysis of soil nitrogen cycling functional flora in the fluctuation zone of Hanjiang oilfield [J].Environmental Science and Technology, 2018,41(11):49-53.
[13]
Levine S N, Schindler D W.Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the experimental lakes Area, Canada [J].Canadian Journal Fish Aquat SCI, 1999,56:451-466.
[14]
Zehr J P, Jenkins B D, Short S M, et al.Nitrogenase gene diversity and microbial community structure: across-system comparison [J].Environmental Microbiology, 2003,5(7):539-554.
[15]
Short S M, Zehr J P.Nitrogenase gene expression in the Chesapeake Bay Estuary [J].Environmental Microbiology, 2007,9(6):1591-1596.
[16]
Zhou H X, Dang H Y, Klotz M G.Environmental conditions outweigh geographical contiguity in determining the similarity of nif H-harboring microbial communities insediments of two disconnected marginal seas [J].Frontiers in Microbiology, 2016,7(11):114-123.
[17]
杨文焕,齐璐,李卫平,等.包头南海湖冰封期不同形态氮的空间分布[J].东北农业大学学报, 2018,49(3):42-49. Yang W H, Qi L, Li W P, et al.Spatial distribution of different forms of nitrogen in Baotou Nanhai Lake in ice period [J].Journal of Northeast Agricultural University, 2018,49(3):42-49.
[18]
杨文焕,申涵,周明利,等.包头南海湖浮游植物优势种生态位及种间联结性季节分析[J].中国环境科学, 2020,40(1):383-391. Yang W H, Shen H, Zhou M L, et al.Seasonal variation analysis of the niche and interspecific association with respect to the dominant phytoplankton species in Nanhai Lake [J].China Environmental Science, 2020,40(1):383-391.
[19]
Liu J Y, Peng M J, Li Y G, et al.Phylogenetic diversity of nitrogen-fixing bacteria and the nif H gene from mangrove rhizosphere soil [J].Canadian Journal of Microbiology, 2012,58(4):531-539.
[20]
NY/T1377-2007土壤pH的测定[S]. NY/T1377-2007 Determination of pH in soil [S].
HJ 717-2014土壤质量全氮的测定:凯氏法[S]. HJ 717-2014 Soil quality-determination of total nitrogen-modified Kjeldahl method [S].
[23]
HJ634-2012土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提取-分光光度法[S]. HJ634-2012 Soil-determination of ammonium, nitrite and nitrate by extraction with potassium chloride solution-spectrophotometric methods [S].
[24]
NY/T 88-1988土壤全磷测定法[S]. NY/T 88-1988 Method for determination of soil total phosphorus [S].
[25]
贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报, 2009,(1):406-415. He J Z, Zhang L M.Advances in microbial ecology of ammonia oxidation and nitrogen cycling [J].Acta Ecologica Sinica, 2009,(1): 406-415.
[26]
滕飞.乌梁素海沉积物营养盐分布及释放规律试验研究[D].包头:内蒙古科技大学, 2019. Teng F, Study on distribution and release of nutrient from sediments in Ulansuhai [D].Baotou: Inner Mongolia University of Science and Technology, 2019.
[27]
寇文伯,黄正云,张杰,等.鄱阳湖湖泊细菌群落组成及结构[J].生态学报, 2015,35(23):7608-7614. Kou W B, Huang Z Y, Zhang J, et al.Composition and structure of bacterial community in Poyang lake [J].Acta Ecologica Sinica, 2015,35(23):7608-7614.
[28]
Affourtit J, Zehr J P, Paerl H W.Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina [J].Microbial Ecology, 2001,41(2):114-123.
[29]
Short S M, Jenkins B D, Zehr J P.Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay [J].Applied and Environmental Microbiology, 2004,70(4):2186-2192.
[30]
陈坚,郑伟文,宋铁英,等.满江红鱼腥藻遗传多样性的RAPD分析[J].水生生物学报, 2001,25(5):531-534. Chen J, Zheng W W, Song T Y, et al.Genetic diversity analysis of Anabaena aestivum by RAPD [J].Acta Hydrobiologica Sinica, 2001,25(5):531-534.
[31]
杨雪琴,连英丽,颜庆云,等.滨海湿地生态系统微生物驱动的氮循环研究进展[J].微生物学报, 2018,58(4):633-648. Yang X Q, Lian Y L, Yan Q Y, et al.Advances in microbial -driven nitrogen cycle in coastal wetland ecosystems [J].Acta Microbiologica Sinica, 2018,58(4):633-648.
[32]
孙巍.东江微生物的群落结构及其在氨氮转化中的作用特点[D].广州:华南理工大学, 2014. Sun W.Community structure of Dongjiang microorganism and its role in ammonia nitrogen transformation [D].Guangzhou: South China University of Technology, 2014.
[33]
张嗣萍,贾楠楠,王红兵,等.一株新型鱼腥藻溶藻细菌的分离鉴定及其溶藻特性[J].湖泊科学, 2018,30(5):1343-1350. Zhang S P, Jia N N, Wang H B, et al.Isolation and algicidal characteristics of one novel algicidal bacterium on Anabaena eucompacta [J].Journal of Lake Sciences, 2018,30(5):1343-1350.
[34]
钱奎梅,刘霞,陈宇炜,等.鄱阳湖河湖转换期间鱼腥藻(Anabaena)的变化[J].湖泊科学, 2016,28(3):566-574. Qian K M, Liu X, Chen Y W, et al.Variations of Anabaena in the transition levels between river-and lake-type of Lake Poyang [J].Journal of Lake Sciences, 2016,28(3):566-574.
[35]
张晶,林先贵,尹睿.参与土壤氮素循环的微生物功能基因多样性研究进展[J].中国生态农业学报, 2009,17(5):1029-1034. Zhang J, Lin X G, Yin R.Research progress on microbial functional gene diversity involved in soil nitrogen cycle [J].Chinese Journal of Ecological Agriculture, 2009,17(5):1029-1034.
[36]
王前,陈海魁,王俊丽.固氮基因的分子进化分析[J].江西农业大学学报, 2013,35(3):597-602. Wang Q, Chen H K, Wang J L.Molecular evolution analysis of nitrogen fixation gene [J].Acta Agriculture Universities Jiangxiensis, 2013,35(3):597-602.
[37]
Paerl H W, Paul V J.Climate change: Links to global expansion of harmful cyanobacteria [J].Water Research, 2012,46:1349-1363.
[38]
张雅洁,李珂,朱浩然,等.北海湖微生物群落结构随季节变化特征[J].环境科学, 2017,38(8):3319-3329. Zhang Y J, Li K, Zhu H R, et al.Community structure of microorganisms and its seasonal variation in Beihai Lake [J].Environmental Science, 2017,38(8):3319-3329.
[39]
李明聪.黄河入海口微生物驱动的氮循环过程及其影响因素的研究[D].泰安:山东农业大学, 2019. Li M C.Microbial-driven nitrogen cycling processes and the affecting factors in the Yellow River Estuary [D].Taian, Shandong: Shandong Agricultural University, 2019.
[40]
Gaby J C, Buckley D H.A global census of nitrogenase diversity [J].Environmental Microbiology, 2011,13(7):1790-1799.
[41]
高瑶远,彭永臻,包鹏,等.低溶解氧环境下全程硝化活性污泥的特性[J].中国环境科学, 2017,37(5):1769-1774. Gao Y Y, Peng Y Z, Bao P, et al.The characteristic of activated sludge in nitrifying low-DO reactor [J].China Environmental Science, 2017,37(5):1769-1774.
[42]
Jatin K.Srivastava, Harish Chandra, S winder J S.Kalra, et al.Plant-microbe interaction in aquatic system and their role in the management of water quality: a review [J].Applied Water Science, 2017,7(3):1079-1090.