Advances in molecular detection on aromatic bioremediation
LI Shu-zhen1,2, DENG Ye2,3, ZHANG Zhao-jing1,2, QU Yuan-yuan1
1. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
2. Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Microbial genes encoding aromatic ring-hydroxylating oxygenase (ARHOs) have been selected as molecular markers for evaluating the potential of microbial degradation ability in environment. The development of culture-independent metagenomic technology has greatly accelerated the research of functional genes and functional groups on aromatic hydrocarbon degradation in recent years. This article summarized the ARHOs related databases, introduced various functional genes and corresponding primers applied to environment samples in microbial degradation of different types of aromatic hydrocarbons (benzene series, naphthalene as well as other polycyclic aromatic hydrocarbons). It also reviewed the applications of this technology in various complex environment samples. Furthermore, the future development of microbial degradation of aromatic compounds using metagenomics technologies was prospected.
厉舒祯, 邓晔, 张照婧, 曲媛媛. 生物降解芳香族化合物的分子检测技术研究进展[J]. 中国环境科学, 2019, 39(6): 2577-2587.
LI Shu-zhen, DENG Ye, ZHANG Zhao-jing, QU Yuan-yuan. Advances in molecular detection on aromatic bioremediation. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(6): 2577-2587.
Fuentes S, Mendez V, Aguila P, et al. Bioremediation of petroleum hydrocarbons:catabolic genes, microbial communities, and applications[J]. Applied Microbiology and Biotechnology, 2014, 98(11):4781-4794.
[2]
Vila J, Tauler M, Grifoll M. Bacterial PAH degradation in marine and terrestrial habitats[J]. Current Opinion in Biotechnology, 2015,33:95-102.
[3]
Penton C R, Johnson T A, Quensen J F, et al. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation:primers and processing matter[J]. Frontiers in Microbiology, 2013, 4:1-17.
[4]
曹晓星,田蕴,胡忠,等.PAHs降解基因及降解酶研究进展[J]. 生态学杂志, 2007,26(6):917-924.Cao X X, Tian Y, Hu Z, et al. Research progress in PAHs degradation genes and enzymes[J]. Chinese Journal of Ecology, 2007,26(6):917-924.
[5]
Meynet P, Head I M, Werner D, et al. Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders[J]. Fems Microbiology Ecology, 2015,91(6):1-11.
[6]
Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons:current knowledge and future directions[J]. Journal of Chemical Technology and Biotechnology, 2005,80(7):723-736.
[7]
苟敏,唐溪,孔春雷,等.环境微生物中芳环加氧酶的获取策略[J]. 应用与环境生物学报, 2012,18(5):880-887.Gou M, Tang X, Kong C L. et al. Discovery strategies for aromatic oxygenases from environmental microbes[J]. Chinese Journal of Applied and Environmental Biology, 2012,18(5):880-887.
[8]
Chakraborty J, Dutta T K. From lipid transport to oxygenation of aromatic compounds:evolution within the Bet v1-like superfamily[J]. Journal of Biomolecular Structure & Dynamics, 2011,29(1):67-78.
[9]
Gibson D T, Parales R E. Aromatic hydrocarbon dioxygenases in environmental biotechnology[J]. Current Opinion in Biotechnology, 2000,11(3):236-243.
[10]
Cebron A, Norini M P, Beguiristain T, et al. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 2008, 73(2):148-159.
[11]
Nojiri H, Shintani M, Omori T. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity[J]. Applied Microbiology and Biotechnology, 2004,64(2):154-174.
[12]
Arora P K, Kumar M, Chauhan A, et al. OxDBase:a database of oxygenases involved in biodegradation[J]. BMC Res Notes, 2009, 2:67.
[13]
Hudlicky T, Gonzalez D, Gibson D T. Enzymatic dihydroxylation of aromatics in enantioselective synthesis:Expanding asymmetric methodology[J]. Aldrichimica Acta, 1999,32(2):35-62.
[14]
Vilchez-Vargas R, Geffers R, Suarez-Diez M, et al. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system[J]. Environmental Microbiology, 2013,15(4):1016-1039.
[15]
Wackett L P. Mechanism and applications of Rieske non-heme iron dioxygenases[J]. Enzyme and Microbial Technology, 2002,31(5):577-587.
[16]
Iwai S, Chai B L, Sul W J, et al. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment[J]. Isme Journal, 2010,4(2):279-285.
[17]
Chakraborty J, Ghosal D, Dutta A, et al. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases[J]. Journal of Biomolecular Structure & Dynamics, 2012, 30(4):419-436.
[18]
Nam J W, Nojiri H, Yoshida T, et al. New classification system for oxygenase components involved in ring-hydroxylating oxygenations[J]. Bioscience Biotechnology and Biochemistry, 2001,65(2):254-263.
[19]
Baldwin B R, Nakatsu C H, Nies L. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR[J]. Applied and Environmental Microbiology, 2003,69(6):3350-3358.
[20]
Iwai S, Johnson T A, Chai B L, et al. Comparison of the Specificities and Efficacies of Primers for Aromatic Dioxygenase Gene Analysis of Environmental Samples[J]. Applied and Environmental Microbiology, 2011,77(11):3551-3557.
[21]
Chakraborty J, Jana T, Saha S, et al. Ring-Hydroxylating Oxygenase database:a database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds[J]. Environmental Microbiology Reports, 2014, 6(5):519-523.
[22]
Fish J A, Chai B L, Wang Q, et al. FunGene:the functional gene pipeline and repository[J]. Frontiers in Microbiology, 2013,4:291.
[23]
Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Research, 2016,44(D1):D279-D285.
[24]
Kimura N, Kamagata Y. Impact of dibenzofuran/dibenzo-p-dioxin amendment on bacterial community from forest soil and ring-hydroxylating dioxygenase gene populations[J]. Applied Microbiology and Biotechnology, 2009,84(2):365-373.
[25]
Bordenave S, Goni-Urriza M, Vilette C, et al. Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels[J]. Environmental Microbiology, 2008,10(12):3201-3211.
[26]
邓晔,冯凯,魏子艳,等.宏基因组学在环境工程领域的应用及研究进展[J]. 环境工程学报, 2016,10(7):3373-3382.Deng Y, Feng K, Wei Z Y, et al. Recent studies and applications of metagenomics in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2016,10(7):3373-3382.
[27]
He Z L, Gentry T J, Schadt C W, et al. GeoChip:a comprehensive microarray for investigating biogeochemical, ecological and environmental processes[J]. Isme Journal, 2007,1(1):67-77.
[28]
He Z L, Deng Y, Van Nostrand J D, et al. GeoChip 3.0as a high-throughput tool for analyzing microbial community composition, structure and functional activity[J]. Isme Journal, 2010,4(9):1167-1179.
[29]
Iwai S, Kurisu F, Urakawa H, et al. Development of an oligonucleotide microarray to detect di-and monooxygenase genes for benzene degradation in soil[J]. Fems Microbiology Letters, 2008,285(1):111-121.
[30]
Rhee S K, Liu X D, Wu L Y, et al. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays[J]. Applied and Environmental Microbiology, 2004,70(7):4303-4317.
[31]
Wu L Y, Liu X, Schadt C W, et al. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification[J]. Applied and Environmental Microbiology, 2006,72(7):4931-4941.
[32]
Nyyssonen M, Piskonen R, Itavaara M. Monitoring aromatic hydrocarbon biodegradation by functional marker genes[J]. Environmental Pollution, 2008,154(2):192-202.
[33]
Piskonen R, Nyyssonen M, Itavaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes[J]. Biodegradation, 2008,19(6):883-895.
[34]
Leigh M B, Pellizari V H, Uhlik O, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs)[J]. Isme Journal, 2007,1(2):134-148.
[35]
Martin F, Malagnoux L, Violet F, et al. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil[J]. Applied Microbiology and Biotechnology, 2013,97(11):5125-5135.
[36]
Jeon C O, Park W, Padmanabhan P, et al. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(23):13591-13596.
[37]
Nyyssonen M, Piskonen R, Itavaara M. A targeted real-time PCR assay for studying naphthalene degradation in the environment[J]. Microbial Ecology, 2006,52(3):533-543.
[38]
Piskonen R, Nyyssonen M, Rajamaki T, et al. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry[J]. Biodegradation, 2005,16(2):127-134.
[39]
Beller H R, Kane S R, Legler T C, et al. A real-time polymerase chain reaction method for monitoring anaerobic, hydrotarbon-degrading bacteria based on a catabolic gene[J]. Environmental Science & Technology, 2002,36(18):3977-3984.
[40]
Park J W, Crowley D E. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils[J]. Applied Microbiology and Biotechnology, 2006,72(6):1322-1329.
[41]
DeBruyn J M, Mead T J, Wilhelm S W, et al. PAH Biodegradative Genotypes in Lake Erie Sediments:Evidence for Broad Geographical Distribution of Pyrene-Degrading Mycobacteria[J]. Environmental Science & Technology, 2009,43(10):3467-3473.
[42]
Ringelberg D B, Talley J W, Perkins E J, et al. Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments[J]. Applied and Environmental Microbiology, 2001,67(4):1542-1550.
[43]
Witzig R, Junca H, Hecht H J, et al. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils:links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases[J]. Applied and Environmental Microbiology, 2006,72(5):3504-3514.
[44]
Ding G C, Heuer H, Zuhlke S, et al. Soil Type-Dependent Responses to Phenanthrene as Revealed by Determining the Diversity and Abundance of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes by Using a Novel PCR Detection System[J]. Applied and Environmental Microbiology, 2010,76(14):4765-4771.
[45]
Yergeau E, Arbour M, Brousseau R, et al. Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments[J]. Applied and Environmental Microbiology, 2009,75(19):6258-6267.
[46]
Wu P, Wang Y S, Sun F L, et al. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China[J]. Applied Microbiology and Biotechnology, 2014,98(2):875-884.
[47]
Xia X, Xia N, Lai Y, et al. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River[J]. Chemosphere, 2015,128:236-244.
[48]
Lozada M, Riva Mercadal J P, Guerrero L D, et al. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia[J]. BMC Microbiology, 2008,8:50.
[49]
Tuomi P M, Salminen J M, Jorgensen K S. The abundance of nahAc genes correlates with the C-14-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers[J]. Fems Microbiology Ecology, 2004,51(1):99-107.
[50]
Dionisi H M, Chewning C S, Morgan K H, et al. Abundance of dioxygenase genes similar to Ralstonia sp strain U2nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments[J]. Applied and Environmental Microbiology, 2004,70(7):3988-3995.
[51]
Wu Y C, Zeng J, Zhu Q H, et al. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution[J]. Scientific Reports, 2017,7:40093.
[52]
Hendrickx B, Junca H, Vosahlova J, et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation:Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site[J]. Journal of Microbiological Methods, 2006,64(2):250-265.
[53]
Hendrickx B, Dejonghe W, Boenne W, et al. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene toluene, ethylbenzene, and xylenes:an in situ mesocosm study[J]. Applied and Environmental Microbiology, 2005,71(7):3815-3825.
[54]
de Carcer D A, Martin M, Karlson U, et al. Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation[J]. Applied and Environmental Microbiology, 2007,73(19):6224-6232.
[55]
Li Y, Liang F, Zhu Y F, et al. Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation[J]. Journal of Soils and Sediments, 2013,13(5):925-931.
[56]
Luepromchai E, Singer A C, Yang C H, et al. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria[J]. Fems Microbiology Ecology, 2002,41(3):191-197.
[57]
Goyal A K, Zylstra G J. Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni[J]. Journal of Industrial Microbiology & Biotechnology, 1997,19(5/6):401-407.
[58]
章俭,夏春谷.芳香烃双加氧酶的结构与功能研究[J]. 化学进展, 2004,16(1):116-122.Zhang J, Xia C G. Studies of structure and function of aromatic hydrocarbon dioxygenases[J]. Progress in Chemistry, 2004,16(1):116-122.
[59]
Wilson M S, Herrick J B, Jeon C O, et al. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments[J]. Applied and Environmental Microbiology, 2003, 69(4):2172-2181.
[60]
Davies J I, Evans W C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism[J]. Biochem. J, 1964, 91(2):251-261.
[61]
Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria[J]. Bioscience Biotechnology and Biochemistry, 2003,67(2):225-243.
[62]
Moser R, Stahl U. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria[J]. Applied Microbiology and Biotechnology, 2001,55(5):609-618.
[63]
Wang C Y, Guo G, Huang Y, et al. Salt Adaptation and Evolutionary Implication of a Nah-related PAHs Dioxygenase cloned from a Halophilic Phenanthrene Degrading Consortium[J]. Scientific Reports, 2017,7:12525.
[64]
Marcos M S, Lozada M, Dionisi H M. Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic marine sediments[J]. Letters in Applied Microbiology, 2009,49(5):602-608.
[65]
Gomes N C M, Borges L R, Paranhos R, et al. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution[J]. Applied and Environmental Microbiology, 2007,73(22):7392-7399.
[66]
Lozada M, Mercadal J P R, Guerrero L D, et al. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia[J]. Bmc. Microbiology, 2008,8:50.
[67]
Yagi J M, Madsen E L. Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer[J]. Applied and Environmental Microbiology, 2009,75(20):6478-6487.
[68]
Parnell J J, Rompato G, Latta L C, et al. Functional Biogeography as Evidence of Gene Transfer in Hypersaline Microbial Communities[J]. Plos One, 2010,5(9):e12919.
[69]
de Sousa S T P, Cabral L, Lacerda G V, et al. Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites[J]. Microbiologyopen, 2017,6(4):1-13.
[70]
Johnsen A R, de Lipthay J R, Reichenberg F, et al. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site[J]. Environmental Science & Technology, 2006,40(10):3293-3298.
[71]
Lagier J C, Khelaifia S, Alou M T, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nature Microbiology, 2016,1(12):16203.
[72]
Lagier J C, Dubourg G, Million M, et al. Culturing the human microbiota and culturomics'[J]. Nature Reviews Microbiology, 2018, 16(9):540-550.
[73]
Kweon O, Kim S J, Baek S, et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases[J]. BMC Biochemistry, 2008,9:11.
[74]
DeBruyn J M, Chewning C S, Sayler G S. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments[J]. Environmental Science & Technology, 2007,41(15):5426-5432.
[75]
Niepceron M, Beguet J, Portet-Koltalo F, et al. Low impact of phenanthrene dissipation on the bacterial community in grassland soil[J]. Environmental Science and Pollution Research, 2014,21(4):2977-2987.
[76]
Meng Y L, Wang Y M, Zhang D B, et al. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions[J]. Cell Research, 2001,11(3):187-193.
[77]
Meckenstock R U, Mouttaki H. Anaerobic degradation of non-substituted aromatic hydrocarbons[J]. Current Opinion in Biotechnology, 2011,22(3):406-414.
[78]
Callaghan A V. Metabolomic investigations of anaerobic hydrocarbon-impacted environments[J]. Current Opinion in Biotechnology, 2013, 24(3):506-515.
[79]
林颖,蔡容华.芳香族化合物生物降解的研究进展[J]. 福建轻纺, 2006,2(201):6-10.Lin Y, Cai R H. Biodegradation of aromatic compounds research advances[J]. The Light&Texti Ie Industries of Fujian, 2006,2(201):6-10.