Abstract:Field experiment was conducted to investigate the effects of bio-organic fertilizer on the diversity of the bacterial community in a cherry orchard. High-throughput sequencing and quantitative real-time PCR were used to determine the bacterial abundance, diversity, and composition under different no fertilizer (CK), conventional fertilizer (CN), bio-organic fertilizer (CB). The results showed that CB significantly increased the soil organic matter, total nitrogen, alkali nitrogen, and available phosphorus. The bacterial 16S rRNA gene copy numbers and α diversity indexes showed that CB increased the number, diversity, and richness of bacteria. Principal coordinate analysis showed that the different fertilizer treatments significantly changed the bacterial community structure. At the phylum level, Proteobacteria, Acidobacteria, Firmicutes, Gemmatimonadetes, and Actinobacteria were the predominant phyla, accounting for 77.22%~86.28% of the total reads. CB significantly decreased the abundances of Acidobacteria_Gp4and Gp6compared with CK, whereas Acidobacteria_Gp7exhibited the opposite trend with an increase of 75.4% compared with CK. Redundancy analysis showed that environmental factors explained 92.3% of bacterial community changes. Soil organic matter, total nitrogen content, and pH were the main factors related to the variations in the bacterial community in cherry orchards. Therefore, bio-organic fertilizer could significantly increase soil nutrient content, quantity of soil bacteria, and bacterial community diversity, which was important for improving soil fertility.
张凯煜, 谷洁, 王小娟, 高华. 微生物有机肥对樱桃园土壤细菌群落的影响[J]. 中国环境科学, 2019, 39(3): 1245-1252.
ZHANG Kai-yu, GU Jie, WANG Xiao-juan, GAO Hua. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(3): 1245-1252.
谭周进,周卫军,张杨珠,等.不同施肥制度对稻田土壤微生物的影响研究[J]. 植物营养与肥料学报, 2007,13(3):430-435. Tan Z J, Zhou W J, Zhang Y Z, et al. Effect of fertilization systems on microbes in the paddy soil[J]. Plant Nutrition and Fertilizer Science. 2007,13(3):430-435.
[2]
袁红朝,秦红灵,刘守龙,等.长期施肥对红壤性水稻土细菌群落结构和数量的影响[J]. 中国农业科学, 2011,44(22):4610-4617. Yuan H C, Qin H L, Liu S L, et al. Response of Abundance and Composition of the Bacterial Community to Long-term Fertilization in Paddy Soils[J]. Scientia Agriculture Sinica, 2011,44(22):4610-4617.
[3]
Berthrong S T, Buckley D H, Drinkwater L E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling[J]. Microbial Ecology. 2013,66(1):158-170.
[4]
乔洁,毕利东,张卫建,等.长期施用化肥对红壤性水稻土中微生物生物量、活性及群落结构的影响[J]. 土壤, 2007,39(5):772-776. Qiao J, Bi L D, Zhang W J, et al. Effects of Long-Term Chemical Fertilization on Soil Microbial Biomass, Activity and Community in Paddy Soil in Red Soil Region of China[J]. Soils, 2007,39(5):772-776.
[5]
Dan W, Qian Y, Zhang J Z, et al. Bacterial community structure and diversity in a black soil as affected by long-term fertilization[J]. Pedosphere. 2008,18(5):582-592.
[6]
杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J]. 土壤学报, 2008,45(5):925-932. Yang X M, Xu Y C, Huang Q W, et al. Organic fertilizers and agricultural sustainable development and ecological and environmental protection[J] Acta Pedologica Sinica. 2008,45(5):925-932.
[7]
Liu L, Li T, Wei X, et al. Effects of a nutrient additive on the density of functional bacteria and the microbial community structure of bioorganic fertilizer[J]. Bioresource Technology. 2014,172(172):328-334.
[8]
陈晓芬,李忠佩,刘明,等.不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学, 2013,46(5):950-960. Chen X F, Li Z P, Liu M, et al. Effect of Different Fertilizations on Organic Carbon and Nitrogen Contents in Water-Stable Aggregates and Microbial Biomass Content in Paddy Soil of Subtrobial China[J]. Scientia Agricultura Sinica, 2013,46(5):950-960.
[9]
王丽丽,石俊雄,袁赛飞,等.微生物有机肥结合土壤改良剂防治烟草青枯病[J]. 土壤学报, 2013,50(1):150-156. Wang L L, Shi J X, Yuan S F, et al. Control of tobacco bacterial wilt with bio manure plus soil amendments[J]. Acta Pedologica Sinica, 2013,50(1):150-156.
[10]
袁英英,李敏清,胡伟,等.生物有机肥对番茄青枯病的防效及对土壤微生物的影响[J]. 农业环境科学学报, 2011,30(7):1344-1350. Yuan Y Y, Li M Q, Hu W, et al. Effect of Biological Organic Fertilizer on Tomato Bacterial Wilt and Soil Microorganism[J]. Journal of Agro-Environment Science, 2011,30(7):1344-1350.
[11]
刘方春,邢尚军,马海林,等.持续干旱对樱桃根际土壤细菌数量及结构多样性影响[J]. 生态学报, 2014,34(3):642-649. Liu F C, Xing S J, Ma H L, et al. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere[J]. Acta Ecologica Sinica, 2014,34(3):642-649.
[12]
王伟华,刘毅,唐海明,等.长期施肥对稻田土壤微生物量、群落结构和活性的影响[J]. 环境科学, 2018,39(1):430-437. Wang W H, Liu Y, Tang H M, et al. Effects of Long-term Fertilization regimes on Microbial Biomass, Community Structure and Activity in a Paddy Soil[J]. Environment Science. 2018,39(1):430-437.
[13]
Shokralla S, Spall J L, Gibson J F, et al. Next-generation sequencing technologies for environmental DNA research[J]. Molecular Ecology. 2012,21(8):1794-1805.
[14]
杨亚东,王志敏,曾昭海.长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响[J]. 中国农业科学, 2018,51(2):290-301. Yang Y D, Wang Z M, Ceng Z H. Effects of Long-Term Different Fertilization and Irrigation Managements on Soil Bacterial Abundance, Diversity and Composition[J]. Scientia Agricultura Sinica, 2018, 51(2):290-301.
[15]
朱金山,张慧,马连杰,等.不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 2018,(5):2400-2411. ZHU J S, ZHANG H, MA L J, et al. Diversity of the Microbial Community in Rice Paddy Soil with Biogas Slurry Irrigation Analyzed by Illumina Sequencing Technology[J]. Environmental Science, 2018,(5).
[16]
Mchugh T A, Schwartz E. Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland[J]. Plant and Soil, 2015,388(1/2):175-186.
[17]
Aminov R I, Chee-Sanford J C, Garrigues N, et al. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria[J]. Appl Environ Microbiol., 2002,68(4):1786-1793.
[18]
Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. 2010,7(5):335-340.
[19]
鲍士旦.土壤农化分析[M]. 北京:中国农业出版社, 2000:25-108. Bao S D. Soil agrochemical analysis[M]. Beijing:China Agriculture Press, 2000:25-108.
[20]
郑涵,田昕竹,王学东,等.锌胁迫对土壤中微生物群落变化的影响[J]. 中国环境科学, 2017,37(4):1458-1465. Zheng H, Tian X Z, Wang X D, Effects of Zn pollution on soil microbial community in field soils and its main influence factors[J]. China Environmental Science, 2017,37(4):1458-1465.
[21]
Denef K, Roobroeck D, Wadu M C W M, et al. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils[J]. Soil Biology & Biochemistry, 2009,41(1):144-153.
[22]
Sturz A V, Christie B R. Beneficial microbial allelopathies in the root zone:the management of soil quality and plant disease with rhizobacteria[J]. Soil Tillage Research, 2003,72(2):107-123.
[23]
王慧颖,徐明岗,周宝库,等.黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素[J]. 中国农业科学, 2018,51(5):914-925. Wang H Y, Xu M G, Zhou B K, et al. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil[J]. Scientia Agricultura Sinica, 2018,51(5):914-925.
[24]
Xun W, Zhao J, Xue C, et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-erm fertilization management conditions of extremely low-productivity arable soil in South China[J]. Environmental Microbiology, 2015, 18(6):1907-1917.
[25]
魏巍,许艳丽,朱琳,等.长期施肥对黑土农田土壤微生物群落的影响[J]. 土壤学报, 2013,50(2):372-380. Wei W, Xu Y L, Zhu L et al. Effects of long-term fertilization on soil microbial community in black soil farmlands[J]. Acta Pedologica Sinica, 2013,50(2):372-380.
[26]
张奇春,王雪芹,时亚南,等.不同施肥处理对长期不施肥区稻田土壤微生物生态特性的影响[J]. 植物营养与肥料学报, 2010,16(1):118-123. Zhang Q C, Wang X Q, Shi Y N, et al. Effects of different fertilization treatments on soil microbial ecological characteristics of paddy fields in long-term no-fertilization areas[J]. Plant Nutrition and Fertilizer Science, 2010,16(1):118-123.
[27]
Liu B, Cong T, Hu S, et al. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight[J]. Applied Soil Ecology, 2007,37(3):202-214.
[28]
Ming G X, Tang H J, Yang X Y, et al. Best soil managements from long-term field experiments for sustainable agriculture[J]. Journal of Integrative Agriculture, 2015,14(12):2401-2404.
[29]
Chen S, Jie G, Hua G, et al. Effect of microbial fertilizer on microbial activity and microbial community diversity in the rhizosphere of wheat growing on the Loess Plateau[J]. African Journal of Microbiology Research, 2011,5(2):137-143.
[30]
张风革,霍云倩,孙艺,等.连续施用生物有机肥对草地生物量及土壤微生物区系的影响[J]. 南京农业大学学报, 2018,41(2):382-388. Zhang F G, Huo Y Q, Sun Y, et al. Effect of consecutive biofertilizer application on aboveground biomass and management of soil microflora in grassland[J]. Journal of Nanjing Agricultural University, 2018,41(2):382-388.
[31]
徐永刚,宇万太,马强,等.长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响[J]. 应用生态学报, 2010,21(8):2078-2085. Xu Y G, Yu W T, Ma Q, et al. Effects of long-term fertilizations on microbial biomass C and N and bacterial community structure in an aquic brown soil[J]. Chinese Journal of Applied Ecology, 2010,21(8):2078-2085.
[32]
Zhou J, Guan D, Zhou B, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China[J]. Soil Biology Biochemistry. 2015,90:42-51.
[33]
Liu J, Sui Y, Yu Z, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry, 2014,70(2):113-122.
[34]
Chu H, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010,12(11):2998-3006.
[35]
Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007,88(6):1354-1364.
[36]
Michaels S, Johannes R. Considering fungal:bacterial dominance in soils Methods, controls, and ecosystem implications[J]. Soil Biology Biochemistry. 2010,42(9):1385-1395.
[37]
王伏伟,王晓波,李金才,等.施肥及秸秆还田对砂姜黑土细菌群落的影响[J]. 中国生态农业学报, 2015,23(10):1302-1311. Wang F W, Wang X B, Li J C, et al. Effects of Fertilization and Straw Incorporation on Bacterial Communities in Lime Concretion Black Soil[J]. Chinese Journal of Eco-Agriculture, 2015,23(10):1302-1311.
[38]
刘彩霞,董玉红,焦如珍.森林土壤中酸杆菌门多样性研究进展[J]. 世界林业研究, 2016,29(6):17-22. Liu C X, Dong Y H, Jiao R Z. Research Progress in Acidobacteria Diversity in Forest Soil[J]. World Forestry Research, 2016,29(6):17-22.
[39]
Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J]. Applied Environmental Microbiology. 2006,72(3):1719-1728.
[40]
Männistö M K, Tiirola M, Häggblom M M. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent[J]. Fems Microbiology Ecology, 2007,59(2):452-465.
[41]
Ling N, Zhu C, Xue C, et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis[J]. Soil Biology Biochemistry, 2016,99:137-149.
[42]
张余莽,周海军,张景野,等.生物有机肥的研究进展[J]. 吉林农业科学, 2010,35(3):37-40. Zhang Y M, Zhou H J, Zhang J Y, et al. Progress of Studies of Bioorganic Fertilizer[J]. Journal of Jilin Agricultural Sciences, 2010, 35(3):37-40.
[43]
何蔚娟.生物有机肥料生产问题研究[J]. 陕西农业科学, 2018, 64(6):90-92. H W J. Study on the production of bio-organic fertilizer[J]. Shannxi Journal of Agricultural Sciences, 2018,64(6):90-92