Characterization of atmospheric circulation and transmission in Chongqing City during ozone polluted days
PU Xi1,2, LI Zhen-liang1,2, ZHANG Yue3, GAO Yang-hua3, LV Ping-jiang1, ZHANG Wei-dong1,2, ZHAI Chong-zhi1,2
1. Chongqing Institute of Eco-Environmental Science, Chongqing 401147, China; 2. Chongqing Key Laboratory of Urban Atmospheric Environment Observation and Pollution Control, Chongqing 401147, China; 3. Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Abstract:The pollution of tropospheric ozone has become an emerging issue in the urban areas of Chongqing. From 2015 to 2019, the near-surface ozone concentrations have elevated with increasing days of exceeding the national air quality standard (NAQS). The comprehensive analysis using meteorological data showed that high ozone concentration frequently appeared when the daily maximum temperature over 35℃ as well as relative humidity below 70%. T-mode principal component analysis (PCT) was applied to synoptic classification. The result demonstrated that the occurrence of ozone pollution in Chongqing was mostly related correlated to three typical weather patterns, such as patterns of the northwest to low (T1), low low-pressure rear type (T4) and west to high (T3), and the corresponding ratio of days of ozone exceeding the NAQS were 34.6%, 17.0%, and 14.2% respectively. The result of HYSPLIT4 indicated air masses during days of ozone exceeding NAQS were mainly short and moderate distance from the north, northeast, south, and west directions. It is worth mentioning that the south areas of urban Chongqing have become more and more important potential source regions of ozone from 2015 to 2019, according to the Potential Source Contribution Function (PSCF) distribution. In addition, PSCF results were highly consistent with the spatial distribution of NOx and VOCs emissions in Chongqing.
林燕芬,王茜,伏晴艳,等.上海市臭氧污染时空分布及影响因素[J]. 中国环境监测, 2017,33(4):60-67. Lin Y F, Wang Q, Fu Q Y, et al. Temporal-spatial characteristics and impact factors of ozone pollution in Shanghai[J]. Environmental Monitoring in China, 2017,33(4):60-67.
[2]
Lu X, Hong J Y, Zhang L, et al. Severe surface ozone pollution in China:A global perspective[J]. Environmental Science and Technology Letters, 2018,5(8):487-494.
[3]
Xing J, Wang S, Jang C, et al. Nonlinear response of ozone to precursor emission changes in China:a modeling study using response surface methodology[J]. Atmospheric Chemistry and Physics, 2010,11(10):5027-5044.
[4]
Wang T, Xue L, Brimblecombe P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of The Total Environment, 2017, 575:1582-1596.
[5]
Wang W, Cheng T, Gu X, et al. Assessing spatial and temporal patterns of observed ground-level ozone in China[J]. Scientific Reports, 2017b,7(1):3651.
[6]
Pu X, Wang T J, Huang X, et al. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China[J]. The Science of the Total Environment, 2017,603-604:807-816.
[7]
Dueñas C, Fernández M C, Cañete S, et al. Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean coast[J]. Science of the Total Environment, 2002,299:97-113.
[8]
Elminir H K. Dependence of urban air pollutants on meteorology[J]. Science of The Total Environment, 2005,350(1):225-237.
[9]
张灿,蒋昌潭,罗财红,等.气象因子对臭氧的影响及其在空气质量预报中的应用[J]. 中国环境监测, 2017,33(4):221-228. Zhang C, Jiang C T, Luo C H, et al. Effects of meteorological conditions on ozone and its application in air quality forecast[J]. Environmental Monitoring in China, 2017,33(4):221-228.
[10]
安俊琳,王跃思,孙扬.气象因素对北京臭氧的影响[J]. 生态环境学报, 2009,18(3):148-155. An J L, Wang Y S, S Y. Assessment of ozone variations and meteorological effects in Beijing[J]. Ecology and Environmental Sciences, 2009,18(3):148-155.
[11]
常炉予,许建明,瞿元昊,等.上海市臭氧污染的大气环流客观分型研究[J]. 环境科学学报, 2019,39(1):169-179. Chang L Y, Xu J M, Qu Y H, et al. Study on objective synoptic classification on ozone pollution in Shanghai[J]. Acta Scientiae Circumstantiae, 2019,39(1):169-179.
[12]
Shu L, Wang T, Han H, et al. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013-2017:Synoptic impacts and source apportionment[J]. Environmental Pollution, 2020,257:113631.
[13]
潘润西,陈蓓,莫雨淳,等.广西PM2.5时空分布特征及污染天气类型[J]. 环境科学研究, 2018,31(3):465-474. Pan R X, Chen B, Mo Y C, et al. temporal characteristics of PM2.5 and pollution weather types in Guangxi[J]. Research of Environmental Sciences, 2018,31(3):465-474.
[14]
王燕丽,薛文博,雷宇,等.京津冀地区典型月O3污染输送特征[J]. 中国环境科学, 2017,37(10):3684-3691. Wang Y L, Xue W B, Lei Y, et al. Model-derived source apportionment and regional transport matrix study of ozone in Jingjinji[J]. China Environmental Science, 2017,37(10):3684-3691.
[15]
严茹莎,李莉,安静宇,等.夏季长三角地区臭氧非线性响应曲面模型的建立及应用[J]. 环境科学学报, 2016,36(4):1383-1392. Yan R S, Li L, An J Y, et al. Establishment and application of nonlinear response surface model of ozone in the Yangtze River Delta region during Summertime[J]. Acta Scientiae Circumstantiae, 2016, 36(4):1383-1392.
[16]
HJ 663-2013环境空气质量评价技术规范[S]. HJ 663-2013 Technical regulation for ambient quality assessment[S].
[17]
Cavazos T. Using self-organizing maps to investigate extreme climate events:An application to wintertime precipitation in the Balkans[J]. Journal of Climate, 2000,13(10):1718-1732.
[18]
Huth R. A circulation classification scheme applicable in GCM studies[J]. Theoretical and Applied Climatology, 2000,67(1):1-18.
[19]
许建明,常炉予,马井会,等.上海秋冬季PM2.5污染天气形势的客观分型研究[J]. 环境科学学报, 2016,36(12):4303-4314. Xu J M, Chang L Y, Ma J H, et al. Objective synoptic weather classification on PM2.5 pollution during autumn and winter seasons in Shanghai[J]. Acta Scientiae Circumstantiae, 36(12):4303-4314.
[20]
Huth R, Beck C, Philipp A, et al. Classifications of atmospheric circulation patterns[J]. Annals of the New York Academy of Sciences, 2008,1146(1):105-152.
[21]
Draxles R R, Hess G D. An overview of the HYSPLIT-4 modelling system for trajectories dispersion and deposition[J]. Australian Meteorological Magazine, 1998,47(4):295-308.
[22]
黄健,颜鹏, Draxler R R.利用HYSPLIT_4模式分析珠海地面SO2浓度的变化规律[J]. 热带气象学报, 2004,18(4):407-414. Huang J, Yan P, Draxler R R. Using HYSPLIT-4dispersion model to analyze the variations of surface SO2 in the Zhuhai region[J]. Journal of Tropical Meteorology, 2004,18(4):407-414.
[23]
王芳,陈东升,程水源,等.基于气流轨迹聚类的大气污染输送影响[J]. 环境科学研究, 2009,22(6):637-642. Wang F, Chen D S, Cheng S Y, et al. Impacts of air pollutant transport based on air trajectory clustering[J]. Research of Environmental Sciences, 2009,22(6):637-642.
[24]
王茜.利用轨迹模式研究上海大气污染的输送来源[J]. 环境科学研究, 2013,26(4):357-363. Wang Q. Study of air pollution transportation source in Shanghai using trajectory model[J]. Research of Environmental Sciences, 2013, 26(4):357-363.
[25]
赵恒,王体健,江飞,等.利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源[J]. 热带气象学报, 2009,25(2):181-186. Zhao H, Wang T J, Jiang F, et al. Investigation into the source of air pollutants to Hong Kong by using backward trajectory method during the TRACE-P campaign[J]. Journal of Tropical Meteorology, 2009, 25(2):181-186.
[26]
Borge R, Lumbreras J, Vardoulakis S, et al. Analysis of long-range transport influences on urban PM10using two-stage atmospheric trajectory clusters[J]. Atmospheric Environment, 2007,41(21):44344450.
[27]
朱书慧,周敏,乔利平,等.2015年12月气流轨迹对长三角区域细颗粒物浓度和分布的影响[J]. 环境科学学报, 2016,36(12):42854294. Zhu S H, Zhou M, Qiao L P, et al. Impact of the air mass trajectories on PM2.5 concentrations and distribution in the Yangtze River Delta in December 2015[J]. Acta Scientiae Circumstantiae, 2016,36(12):42854294.
[28]
Sirois A, Bottenheim J W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia[J]. Journal of Geophysical Research:Atmospheres, 1995,100(D2):2867-2881.
[29]
Karaca F, Anil I, Alagha O. Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity[J]. Atmospheric Environment, 2009,43(36):5713-5722.
[30]
GB 3095-2012环境空气质量标准[S]. GB 3095-2012 Ambient air quality standard[S].
[31]
Wang Y Q, Zhang X Y, Draxler R R. TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling & Software, 2009,24(8):938-939.
[32]
Jeong U, Kim J, Lee H, et al. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements:a PSCF model approach[J]. Journal of Environmental Monitoring, 2011,13(7):1905-1918.
[33]
Zhang R, Jing J, Tao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing:seasonal perspective[J]. Atmospheric Chemistry and Physics, 2013,13:9953.
[34]
耿福海,毛晓琴,铁学熙,等.2006~2008年上海地区臭氧污染特征与评价指标研究[J]. 热带气象学报, 2010,26(5):584-590. Geng F H, Mao X Q, Tie X X, et al. Analysis of ozone characteristics and toward establishing an ozone warning system in Shanghai[J]. Journal of Tropical Meteorology, 2010,26(5):584-590.
[35]
程麟钧,王帅,宫正宇,等.2008~2016年臭氧监测试点城市的臭氧污染特征[J]. 中国环境监测, 2017,33(4):26-32. Cheng L J, Wang S, Gong Z Y, et al. Pollution trends of ozone in ozone monitoring pilot cities from 2008 to 2016[J]. Environmental Monitoring in China, 2017,33(4):26-32.
[36]
孟晓艳,宫正宇,张霞,等.全国及重点区域臭氧污染现状[J]. 中国环境监测, 2017,33(4):17-25. Meng X Y, Gong Z Y, Zhang X, et al. Pollution characteristics of ozone in China and key regions[J]. Environmental Monitoring in China, 2017,33(4):26-32.
[37]
刘建,吴兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响[J]. 中国环境科学, 2017,37(3):813-820. Liu J, Wu D, Fan S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta[J]. China Environmental Science, 2017,37(3):813-820.
[38]
谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J]. 热带气象学报, 2007,23(5):515-520. Tan J G, Lu G L, Geng F H, et al. Analysis and prediction of surface O3 concentration and related meteorological factors in summertime in urban area of Shanghai[J]. Journal of Tropical Meteorology, 2007, 23(5):515-520.