Abstract:Daily ozone in 2019 over the 55 cities in the Yangtze River Delta (YRD) region was forecasted by using the operational Regional Atmospheric Environmental Modeling System for eastern China (RAEMS). The results showed that the performance was consistent in different forecast lengths of 1~4d. Good agreement of modelled ozone with the observed was found through indices of correlation coefficient (r), FACx, etc. Correlation coefficients over most cities were over 0.7. At the same time, forecast was generally overestimated. The high consistence in temporal trend suggested that the single factor dynamical learning linear method of with interception of zero and learning period of 5~7d was the most appropriate approach for the improvement of ozone forecast over YRD. The forecast performance was significantly improved. Mean bias decreased from over 25 to 0.4μg/m3. Mean error, normalized mean error and root mean square error (RMSE) was 30% decreased, among which RMSE decreased from 42μg/m3 to 27μg/m3. Performance indices except for r at over 90% cities were improved. For ozone pollution, CSI of O3-8h and O3-1h was 28% and 17% increased, respectively and the missed detection rate and false alarm rate was balanced. In general, the application of the improvement method resolved the systematical overestimation of ozone forecast over the YRD region.
陈仁杰,陈秉衡,阚海东.上海市近地面臭氧污染的健康影响评价[J]. 中国环境科学, 2010,30(5):603-608. Chen R J, Chen B H, Kan H D. Health impact assessment of surface ozone pollution in Shanghai[J]. China Environmental Science, 2010,30(5):603-608.
[2]
Lim SS, Theo V, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67risk factors and risk factor clusters in 21regions, 1990~2010:a systematic analysis for the global burden of disease study 2010[J]. Lancet, 2012,380(9859):2224-2260.
[3]
Shang Y, Sun Z, Cao J, et al. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality[J]. Environment international, 2013,54:100-111.
[4]
GB3095-2012环境空气质量标准[S]. GB3095-2012 Ambient air quality standards[S].
[5]
Stocker T, Qin D, Plattner G, et al. Climate change 2013:The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2014.
[6]
周秀骥,罗超,李维亮,等.中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995,40(15):1396-1398. Zhou X J, Luo C, Li W L, et al. Change of total ozone over China and the low center over Tibet[J]. Chinese Science Bulletin, 1995,40(15):1396-1398.
[7]
谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J]. 热带气象学报, 2007,23(5):515-520. Tan J G, Lu G L, Geng F H, et al. Analysis and prediction of surface O3concentration and related meteorological factors in summertime in urban area of Shanghai[J]. J of Tropical Meteorology, 2007,(5):515-520.
[8]
Geng F, Tie X, Xu J, et al. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China[J]. Atmospheric Environment, 2008,42:6873-6883.
[9]
Gao W, Tie X, Xu J, et al. Long-term trend of O3 in a mega City (Shanghai), China:Characteristics, causes, and interactions with precursors[J]. Science of the Total Environment, 2017,603-604:425-433.
[10]
Gu Y, Li K, Xu J, et al. Observed dependence of surface ozone on increasing temperature in Shanghai, China[J]. Atmospheric Environment, 2020,221(2020):117108.
[11]
余钟奇,马井会,毛卓成,等.2017年上海臭氧污染气象条件分析及臭氧污染天气分型研究[J]. 气象与环境学报, 2019,35(6):46-54. Yu Z Q, Ma J H, Mao C Z, et al. Study on the meteorological conditions and synoptic classifications of O3pollution in Shanghai in 2017[J]. J. of Meteorology and Environment, 2019,35(6):46-54.
[12]
王玫,郑有飞,柳艳菊,等.京津冀臭氧变化特征及与气象要素的关系[J]. 中国环境科学, 2019,39(7):2689-2698. Wang M, Zheng Y F, Liu Y J, et al. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region[J]. China Environmental Science, 2019,39(7):2689-2698.
[13]
毛卓成,许建明,杨丹丹,等.上海地区PM2.5-O3复合污染特征及气象成因分析[J]. 中国环境科学, 2019,39(7):2730-2738. Mao Z C, Xu J M, Yang D D, et al. Analysis of characteristics and meteorological causes of PM2.5-O3 compound pollution in Shanghai[J]. China Environmental Science, 2019,39(7):2730-2738.
[14]
Byun D, Ching J, Novak J, et al. Development and implementation of the EPA's Models-3 initial operating version:Community multi-scale air quality (CMAQ) model[M]//Air Pollution Modeling and Its Application XII., Springer US, 1998.
[15]
王自发,谢付莹,王喜全,等.嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006,30(5):778-790. Wang Z F, Xie F Y, Wang X Q, et al. Development and application of nested air quality prediction modeling system[J]. Chinese Journal of Atmosphere Science, 2006,30(5):778-790.
[16]
Grell G, Peckham S, Schmitz R, et al. Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39:6957-6975.
[17]
王自发,吴其重, Baguidi A,等.北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1):19-26. Wang Z F, Wu Q Z, Baguidi A, et al. Ensemble air quality multimodel forecast system for Beijing (EMS-Beijing):Model description and preliminary application[J]. J. of Nanjing University of Information Science and Technology, 2009,1(1):19-26.
[18]
周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学, 2016,36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. WRF-Chem based PM2.5 forecast and bias analysis over the East China Region[J]. China Environmental Science, 2016,36(8):2251-2259.
[19]
邓雪娇,邓涛,麦博儒,等.华南区域大气成分业务数值预报GRACEs模式系统[J]. 热带气象学报, 2016,32(6):900-907. Deng X J, Deng T, Mai B R, et al. The regional atmospheric composition numerical forecasting modelling system (GRACE) in South China[J]. J. of Tropical Meteorology, 2016,32(6):900-907.
[20]
Zhou G, Xu J, Xie Y, et al. Numerical air quality forecasting over Eastern China:An operational application of WRF-Chem[J]. Atmospheric Environment, 2017,153:94-108.
[21]
Wang Z, Li J., Wang Z, et al. Modeling study of regional severe hazes over mid-eastern china in January 2013 and its implications on pollution prevention and control[J]. Science China Earth Science, 2014,57(1):3-13.
[22]
Glahn H R, Lowry D A. The use of model output statistics (MOS) in objective weather forecasting[J]. J Applied. Meteorology, 1972,11(8):1203-1211.
[23]
徐祥德,丁国安,周丽,等.北京城市冬季大气污染动力:化学过程区域性三维结构特征[J]. 科学通报, 2003,48(5):496-501. Xu X D, Ding G A, Zhou L, et al. Atmospheric pollution dynamics in winter of Beijing:regional 3D structural characteristics of chemical process[J]. Chinese Science Bulletin, 2003,48(5):496-501.
[24]
许建明,徐祥德,刘煜,等.CMAQ-MOS区域空气质量统计修正模型预报途径研究[J]. 中国科学(D辑:地球科学), 2005,(S1):131-144. Xu J M, Xu X D, Liu Y, et al., Study on the prediction path for CMAQ-MOS regional air quality statistical correction model[J]. Science in China (Series D), 2005,(S1):131-144.
[25]
谢敏,钟流举,陈焕盛,等.CMAQ模式及其修正预报在珠三角区域的应用检验[J]. 环境科学与技术, 2012,35(2):96-101. Xie M, Zhong L J, Chen H S, et al. Application and verification of CMAQ model and revision forecast in Pearl River Delta Region[J]. Environmental Science and Technology, 2012,35(2):96-101.
[26]
王茜,吴剑斌,林燕芬.CMAQ模式及其修正技术在上海市PM2.5预报中的应用检验[J]. 环境科学学报, 2015,35(6):1651-1656. Wang Q, Wu J B, Lin Y F. Implementation of a dynamic linear regression method on the CMAQ forecast of PM2.5in Shanghai. [J]. Acta Scientiae Circumstantiae, 2015,35(6):1651-1656.
[27]
吴剑斌,肖林鸿,晏平仲,等.最优化集成方法在城市臭氧数值预报中的应用研究[J]. 中国环境监测, 2017,33(4):213-220. Wu J B, Xiao L H, Yan P Z, et al. Application of optimal consensus forecast in urban ozone prediction[J]. Environmental Monitoring in China, 2017,33(4):213-220.
[28]
瞿元昊,许建明,Brasseur G,等.利用多模式最优集成方法预报上海PM2.5[J]. 环境科学学报, 2018,38(9):3449-3456. Qu Y H, Xu J M, Brasseur G, et al. Application of OCF on PM2.5 forecast in Shanghai[J]. Acta Scientiae Circumstantiae, 2018,38(9):3449-3456.
[29]
张天航,王继康,张恒德,等.一种最优多模式集成方法在我国重污染区域PM2.5浓度预报中的应用[J]. 环境工程技术学报, 2019,9(5):520-530. Zhang T H, Wang J K, Zhang H D et al. Application of a best multi-model ensemble method in PM2.5 forecast in heavily polluted regions of China[J]. J. of Environmental Engineering Technology, 2019,9(5):520-530.
[30]
李梓铭,赵秀娟,孙兆彬,等.基于相似集合预报技术的臭氧预报释用研究[J]. 中国环境科学, 2020,40(2):475-484. Li Z M, Zhao X J, Sun Z B, et al. Research on the interpretation and correction of numerical ozone forecast based on analog ensemble[J]. China Environmental Science, 2020,40(2):475-484.
[31]
Chang J S, Binkowski F S, Seaman N L, et al. The regional acid deposition model and engineering model[R]//State-of-science/technology, Report 4, National acid precipitation assessment program. Washington, DC 1989.
[32]
Fountoukis C, Nenes A. ISORROPIA II:A computationally efficient aerosol thermodynamic equilibrium model for K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, H2O aerosols[J]. Atmospheric Chemistry and Physics, 2007,7:4639-4659.
[33]
Schell B, Ackermann I, Hass H, et al. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system[J]. J Geophysics Research, 2001,106:28275-28293.
[34]
Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006, 6:3181-3210.
[35]
Emmons L, S Walters, P Hess, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4(MOZART-4)[J]. Geoscience Model Development, 2010,3:43-67.
[36]
HJ633-2012环境空气质量指数(AQI)技术规定(试行)[S]. HJ633-2012 Technical regulation on ambient air quality index (on trial)[S].
[37]
张国琏,甄新蓉,谈建国,等.影响上海市空气质量的地面天气类型及气象要素分析[J]. 热带气象学报, 2010,26(1):124-128. Zhang G L, Zhen X R, Tan J G, et al. Analysis of the relationship between the air quality in Shanghai and surface pressure patterns and meteorological factors[J]. J of Tropical Meteorology, 2010,26(1):124-128.