Comparative study on CO2 emissions under different recycling technologies for food waste in Japan
JIANG Xiao-qun1, TAN Ling-zhi2, SUN Yue-yang3
1. School of Environment & Natural Resources, Renming University of China, Beijing 100872, China; 2. Center for Population Development and Policy Research, Chongqing Technology and Business University, Chongqing 400672, China; 3. Anhui Development and Reform Commission, Hefei 230001, China
Abstract:Based on life cycle assessment (LCA), survey data and statistical data from the Ministry of Agriculture, Forestry and Fisheries of Japan and Ministry of Environment of Japan were used to evaluate CO2 emissions of food waste under different recycling or non-recycling treatment systems. The research makes comparisons of CO2 emissions reduction caused by 10 kinds of recycling technology and 3non-recycling (mainly incineration) treatment technologies. The results show that, pretreatment and treatment stages combined accounts for almost 85% CO2 emissions, and the least is recycling stage, which can offset part of the emissions. As for the total emission, methanation (circulating digestive liquids) is the most favorable one with 380.6kg CO2e/t reduction a year. In addition, it turns out that methanation (only) and fertilization can reduce CO2 emissions, while solidification of combustible waste (RDF), methanation (mixed with underground water), feed (liquefaction), methanation (mixed with incineration), carbonization, ethanol, feed (extra drying) and incineration (power generation), incineration (no power generation), incineration of combustible waste (no power generation) all increase the CO2 emission successively. While excluding recycling products transportation, methanation (mixed with underground water) will produce less CO2 emission than the feed (liquefaction), and the other order will remain the same according to the advantages and disadvantages of technologies.
姜晓群, 谭灵芝, 孙月阳. 日本食品废物不同资源化技术下的碳排放比较研究[J]. 中国环境科学, 2021, 41(2): 959-966.
JIANG Xiao-qun, TAN Ling-zhi, SUN Yue-yang. Comparative study on CO2 emissions under different recycling technologies for food waste in Japan. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(2): 959-966.
Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Kanagawa:The Institute for Global Environmental Strategies, 2006:5-6.
[2]
Intergovernmental Panel on Climate Change. Summary for Policymakers and Technical Summary of Climate Change:Mitigation[C]//Cambridge University Press, Cambridge, 2001.
[3]
渠慎宁,杨丹辉.中国废弃物温室气体排放及其峰值测算[J]. 中国工业经济, 2011,(11):37-47.Qu S N, Yang D H. A study on China's GHG emission from waste sector:trend and peak value[J]. China Industrial Economics, 2011, (11):37-47.
[4]
Li R, Chen S, Li X. Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system[J]. Applied Biochemistry and Biotechnology, 2010,160(2):643-654.
[5]
Zhang R H, Hamed M, Karl H, et al. Characterization of food waste as feedstock for anaerobic digestion[J]. Bioresource Technology, 2007, 98(4):929-935.
[6]
王利红,蔡玮玮,张笑,等.食品废物的研究回顾与展望——基于Web of Science数据库的文献计量分析[J]. 环境科学与技术, 2013, (8):49-53.Wang L H, Cai W W, Zhang X, et al. A bibliometric analysis of research on food waste based on web of science[J]. Environmental Science & Technology, 2013,(8):49-53.
[7]
Joel E, Stewart B, Enda G, et al. Life cycle costing of municipal food waste management systems:The effect of environmental externalities and transfer costs using local government case studies[J]. Resources, Conservation & Recycling, 2018,(138):118-129.
[8]
潘玲阳,叶红,黄少鹏,等.北京市生活垃圾处理的温室气体排放变化分析[J]. 环境科学与技术, 2010,33(9):123-131,179.Pan L Y, Ye H, Huang S P, et al. Greenhouse gas emission from municipal solid waste treatment in Beijing[J]. Environmental Science & Technology, 2010,33(9):123-131,179.
[9]
Enrique C G, David M W, Richard O S, et al. An economic and carbon analysis of bio methane production from food waste to be used as a transport fuel in Mexico[J]. Journal of Cleaner Production, 2018,(196):852-862.
[10]
Filomena A, Francesco P, Umberto A. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste[J]. Journal of Cleaner Production, 2018,(174):462-476.
[11]
Chen T, Shen D S, Jin Y Y, et al. Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model[J]. Applied Energy, 2017,(208):666-677.
[12]
Andres R, Serina A. Consequential life cycle assessment of bioenergy systems:A literature review[J]. Journal of Cleaner Production, 2018, (189):358-373.
[13]
Osvaldo K, Matheus V, Samuel N M, et al. Food waste anaerobic digestion of a popular restaurant in Southern Brazil[J]. Journal of Cleaner Production, 2018,(196):382-389.
[14]
De C D, Wen Z G, Fan F, et al. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks:a case study in Beijing[J]. Renewable and Sustainable Energy Reviews, 2016,(59):1676-1685.
[15]
Kenji K, Hisae T, Tatsuya H. Life cycle environmental and economic analysis of regional-scale food waste biogas production with digestate nutrient management for fig fertilisation[J]. Journal of Cleaner Production, 2018,(190):552-562.
[16]
Elsayed E, Hisham H, Bipro R D, et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste[J]. International Journal of Hydrogen Energy, 2011,(36):11379-11387.
[17]
Prabhat J, Chettiyappan V. Sustainable management practices of food waste in Asia:Technological policy drivers[J]. Journal of Environmental Management, 2019,(247):538-550.
[18]
Tasneem A, Tauseef S A. Anaerobic digestion for global warming control and energy generation:An overview[J]. Renewable and Sustainable Energy Reviews, 2012,(16):3228-3242.
[19]
Joris A M, Joris M, Jeroen D, et al. Fermented liquid feed for pigs:An ancient technique for the future[J]. Journal of Animal Science and Biotechnology, 2015,(4):2-9.
[20]
Saray S C, Ali H. Thermal and probiotic treatment effects on restaurant waste for incorporation into poultry diet[J]. International Journal of Recycling of Organic Waste in Agriculture, 2014,(3):3-7.
[21]
吕维霞,杜娟.日本垃圾分类管理经验及其对中国的启示[J]. 华中师范大学学报(人文社会科学版), 2016,55(1):39-53.Lv W X, Du J. Japan's waste classification management experience and its inspiration to China[J]. Journal of Central China Normal University (Humanities and Social Science), 2016,55(1):39-53.
[22]
张瑞娜.日本生活垃圾分类模式和实施效果分析[J]. 环境卫生工程, 2018,26(5):4-7.Zhang R N. Classification pattern and implementation effects of domestic waste in Japan[J]. Environmental Sanitation Engineering, 2018,26(5):4-7.
[23]
王子彦,丁旭.我国城市生活垃圾分类回收的问题及对策——对日本城市垃圾分类经验的借鉴[J]. 生态经济, 2009,(1):176-178.Wang Z Y, Ding X. Hao Y, Xie S. Problems and policy of municipal household waste sorted reclaiming in China, a reference from Japan[J]. Ecological Economy, 2009,(1):176-178.
[24]
蔡建国,李霁,刘丽君.践行垃圾分类,共享绿色环保——日本千叶市在资源节约和垃圾分类方面给中国的启示[J]. 中国资源综合利用, 2017,35(11):61-63.Cai J G, Li J, Liu L J. Garbage sorting, share green environmental protection——The enlightenment on China from resource saving and garbage sorting of Chiba in Japan[J]. China Resources Comprehensive Utilization, 2017,35(11):61-63.
[25]
孙艳艳,张红,张敏.日本食品废弃物管理对北京市的借鉴[J]. 城市管理与科技, 2018,20(5):85-87.Sun Y Y, Zhang H, Zhang M. Waste management of food industry in Japan and reference for Beijing[J]. Sustainability Urban Management and Science & Technology, 2018,20(5):85-87.
[26]
孙艳艳,张红,苗润莲,等.日本食品废弃物量化管理体系研究[J]. 世界农业, 2017,(9):199-206.Sun Y Y, Zhang H, Miao R L, et al. Study on the quantitative management system of food waste in Japan[J]. World Agriculture, 2017,(9):199-206.
[27]
[27]
三菱総合研究所.食品産業リサイクル状況等調査委託事業(リサイクル進捗状況に関する調査)報告書[R/OL].[2016-09-06]. http://101.96.8.164/www.maf.go.jp/j/budget/yosan_kansi/sikkou/tokutei_keihi/sei-ka_h25/shokusan_ippan/pdf/h25_ippan_213_00.pdf. Mitsubishi Research Institute.Report on the investigation of food waste recycling industry[R/OL].[2016-09-06]. http://101.96.8.164/www.maf.go.jp/j/budget/yosan_kansi/sikkou/tokutei_keihi/sei-ka_h25/shokusan_ippan/pdf/h25_ippan_213_00.pdf.
[28]
日本下水道新技術機構.下水道機構情報,春季号エンジニアリングリポート 1[R]. 東京:下水道新技術機構, 2009.Japan Sewerage Corporation. Report on the information technology of sewerage[R]. Tokyo:Sewerage Corporation, 2009.
[29]
NEDO.先進的な食品リサイクルシステムに係る実施可能性調査[R]. 東京:农林水产省, 2010.NEDO. Feasibility research on an advanced food waste recycling system[R]. Tokyo:Ministry of Agriculture, Forestry and Fisheries, 2010.
[30]
吴亚娟.城市生活垃圾典型组分水分分布特性及干燥过程试验研究[D]. 浙江:浙江大学, 2012.Wu Y J. Study on the moisture distribution and driving process of MSW components[D]. Zhejiang:Zhejiang University, 2012.
[31]
農林水産省.食品廃棄物等の年間発生量及び食品循環資源の再生利用等実施率について[R/OL].[2016-05-22]. http://www.maf.go.jp/j/shokusan/recycle/syokuhin/kouhyou.html. Ministry of Agriculture, Forestry and Fisheries. Annual rate of food waste and its utilization of recycled food resources[R/OL].[2016-05-22]. http://www.maf.go.jp/j/shokusan/recycle/syokuhin/kouhyou.html.
[32]
農林水産省.平成26年度食品廃棄物等の年間発生量及び食品循環資源の再生利用等実施率[R/OL].[2016-05-22]. http://www.maf.go.jp/j/shokusan/recycle/syokuhin/pdf/h26_zentai_suikei.pdf. Ministry of Agriculture, Forestry and Fisheries.Annual rate of food waste and its utilization in fiscal year.[R/OL].[2016-05-22]. http://www.maf.go.jp/j/shokusan/recycle/syokuhin/pdf/h26_zentai_suikei.pdf.
[33]
農林水産省.食品ロス統計調査(世帯調査•外食産業調査)[R/OL].[2016-07-14]. http://www.maf.go.jp/j/tokei/kouhyou/syokuhin_los/. Ministry of Agriculture, Forestry and Fisheries.Survey on food waste loss statistics[R/OL].[2016-07-14]. http://www.maf.go.jp/j/tokei/kouhyou/syokuhin_los/.