Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas Stutzeri A1501
DONG Guo-wen1,2, CHEN Piao1, REN Guo-ping1, WANG Chao1, JIN Shu-guang3, YE Jie1, ZHOU Shun-gui1
1. Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2. College of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; 3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:Pseudomonas stutzeri (P. stutzeri) A1501was used as a model nitrogen-fixing strain and boron carbide (B4C) was selected as a typical electron transfer carrier to construct an electrocatalytic nitrogen reduction system. The effect of B4C addition on the ammonia production under different conditions was explored. The results showed that B4C significantly enhanced the ammonia production of the electrocatalytic nitrogen reduction system mediated by P. stutzeri A1501. With the dosage of 0.4g/L, the addition of B4C (B4C900) prepared at 900℃ calcination temperature improved the ammonia yield by 117%. This was because the abundant activation sites on the surface of B4C900 promote N2 adsorption and activation. In addition, the electrochemical and spectroscopic spectrograms showed that the addition of B4C900 not only triggered P. stutzeri A1501 to secrete more redox active substances, but also drove the construction of highly active cathode biofilms, thereby enhancing the long-distance transfer and utilization of electrode electrons.
Barbara K, David J. Mechanism of molybdenum nitrogenase[J]. Chemical Reviews, 1996,96(7):2983-3012.
[2]
McGlynn S E, Boyd E S, Peters J W, et al. Classifying the metal dependence of uncharacterized nitrogenases[J]. Frontiers in Microbiology, 2013,3(10):1-8.
[3]
任晓玲,严孝清,龚湘姣,等.光(电)催化氮气还原合成氨研究进展[J]. 化工进展, 2020,39(12):4856-4876. Ren X L, Yan X Q, Gong X J, et al. Research progress of light (electro) catalytic reduction of nitrogen to ammonia[J]. Chemical Industry and Engineering Progress, 2020,39(12):4856-4876.
[4]
Yandulov D V, Schrock R R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center[J]. Science, 2003,301(5629):76-78.
[5]
Sclafani A, Augugliaro V, Schiavello M. Dinitrogen electrochemical reduction to ammonia over iron cathode in aqueous medium[J]. Journal of the Electrochemical Society, 1983,130(3):734-735.
[6]
喻兰兰,秦疆州,杨涵,等.电催化固氮的研究进展与挑战[J]. 工业催化, 2019,27(10):1-6. Yu L L, Qin J Z, Yang H, et al. Research progress and challenges of electrocatalytic nitrogen fixation[J]. Industrial Catalysis, 2019,27(10):1-6.
[7]
Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016,352(6248):448-44.
[8]
肖瑶,胡文娟,任衍彪,等.仿生光电催化氮气还原[J]. 化学进展, 2018,30(4):325-337. Xiao Y, Hu W J, Ren Y B, et al. Bioinspired photo/electrocatalytic N2Fixation[J]. Progress in Chemistry, 2018,30(4):325-337.
[9]
Dmitry V, Yandulov, Schrock R R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center[J]. Science, 2014,301(76):76-78.
[10]
Juan F, Ortiz-Medina, Amy M, et al. Nitrogen gas fixation and conversion to ammonium using microbial electrolysis cells[J]. ACS Sustainable Chemistry & Engineering, 2019,7(3):3511-3519.
[11]
Rago L, Zecchin S, Villa F, et al. Bioelectrochemical nitrogen fixation (e-BNF):Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation[J]. Bioelectrochemistry, 2019,125:105-115.
[12]
Zottola E A, Sasahara K C. Microbial biofilms in the food processing industry-Should they be a concern?[J]. International Journal of Food Microbiology, 1994,23(1994):125-148.
[13]
Baranitharan E, Khan M R, Prasad D M R, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent[J]. Bioprocess and Biosystems Engineering, 2014,38(1):15-24.
[14]
Lovley D R. Syntrophy goes electric:direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017,71(1):643-664.
[15]
Wu Y D, Liu T X, Li X M, et al. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200:electrochemical parameters and thermodynamics[J]. Environmental Science & Technology, 2014,48(16):9306-9314.
[16]
Vineesh T V, Kumar M P, Takahashi C, et al. Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide[J]. Advanced Energy Materials, 2015,5(17):1500658.
[17]
Qiu F, Chu J G, Hu W, et al. Study of effect of Zr addition on the microstructures and mechanical properties of (TiCx-TiB2)/Cu composites by combustion synthesis and hot press consolidation in the Cu-Ti-B4C-Zr system[J]. Materials Research Bulletin, 2015,70:167-172.
[18]
Yu X M, Han P, Wei Z X, et al. Boron-Doped Graphene for electrocatalytic N2 reduction[J]. Joule, 2018,2(8):1610-1622.
[19]
Yan Y L, Ping S Z, Peng J P, et al. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501[J]. Bmc Genomics, 2010,11(1):1-13.
[20]
Sathishkumar K, Sathiyaraj S, Parthipan P, et al. Electrochemical decolorization of methyl red by RuO2-IO2-TiO2 electrode and biodegradation with Pseudomonas stuteri MN1 and Acinetobacter baumannii MN3:An integrated approach[J]. Chemosphere, 2017,183:204-211.
[21]
Kleiner D. Bacterial ammonium transport[J]. FEMS Microbiol Lett, 1985,32(2):87-100.
[22]
刘诗彧,王荣昌,马翠香,等.氧化石墨烯与聚苯胺修饰阴极的微生物燃料电池电化学性能[J]. 中国环境科学, 2019,39(9):3866-3871. Liu S Y, Wang R C, Ma C X, et al. Electrochemical properties of microbial fuel cells with graphene oxide and polyaniline modified cathodes[J]. China Environmental Science, 2019,39(9):3866-3871.
[23]
Yu L P, Yuan Y, Christopher R, et al. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer[J]. Biosensors Bioelectronics, 2018,106:21-28.
[24]
Chaney A L, Marbach E P. Modified reagents for determination of urea and ammonia[J]. Clinical Chemistry, 1962,8(2):130-132.
[25]
周玉莲,于永波,黄湾,等.氧化石墨烯电催化高效降解有机燃料RBk5[J]. 中国环境科学, 2019,39(11):4653-4659. Zhou Y L, Yu Y B, Huang W, et al. Highly efficient degradation of organic dye RBk5 by graphene oxide electrocatalysis[J]. China Environmental Science, 2019,39(11):4653-4659.
[26]
Dong G H, Ho W K, Wang C Y. Selective photocatalytic N, fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A. 2015,3(46):23435-23441.
[27]
Ye J, Hu A D, Ren G P, et al. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity[J]. Bioresource Technology, 2018,247:131-137.
[28]
牛雨薇,袁林江,刘冰茵,等.两株产电菌电子介体介导的胞外电子传递机理研究[J]. 中国环境科学, 2020,40(11):4911-4918. Niu Y W, Yuan L J, Liu B Y, et al. Electron mediator mediated extracellular electron transport mechanism in two electricity-producing bacteria[J]. China Environmental Science, 2019,39(11):4653-4659.
[29]
Ren G P, Hu A D, Huang S F, et al. Graphite-assisted electro-fermentation methanogenesis:Spectroelectrochemical and microbial community analyses of cathode biofilms[J]. Bioresource Technology, 2018,269:74-80.
[30]
Ye J, Hu A D, Cheng X Y, et al. Response of enhanced sludge methanogenesis by red mud to temperature:Spectroscopic and electrochemical elucidation of endogenous redox mediators[J]. Water Research, 2018,143:240-249.
[31]
Ye J, Yu J, Zhang Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B:Environmental, 2019,257:117916.
[32]
Zhan Y H, Deng Z P, Yan Y L, et al. NfiR, a new regulatory noncoding RNA (ncRNA), is required in concert with the NfiS ncRNA for optimal expression of nitrogenase genes in Pseudomonas stutzeri A1501[J]. Applied and Environmental Microbiology, 2019,85(14):e00762-19.
[33]
Ding R I, Cao S H, Chen H, et al. Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation[J]. Colloids and Surfaces A, 2019, 563(20):263-270.
[34]
Hori T, Müller A, lgarashi Y, et al. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing[J]. The ISME Journal, 2010,4(2):267-278.
[35]
Brownson D A C, Kampouris D K, Banks C B. Graphene electrochemistry:fundamental concepts through to prominent applications[J]. Chemical Society Reviews, 2012,41(21):6944-6976.
[36]
Zhang L, Ji X Q, Ren X, et al. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions[J]. ACS Sustainable Chemical Engineering, 2018,6(8):9550-9554.
[37]
Wang B, Xiao K M, Jiang Z F, et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures[J]. Energy & Environmental Science, 2019, 12(7):2185-2191.
[38]
Boyd E S, Peters J W. New insights into the evolutionary history of biological nitrogen fixation[J]. Frontiers in Microbiology, 2013,4:201-210.
[39]
Mantri Y, Williams K P. Islander:a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities[J]. Nucleic Acids Research, 2004,32:D55-D58.
[40]
Liu X M, Zhang X G, Fu S Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Materials Research Bulletin, 2006,41(3):620-627.
[41]
Fricke K, Harnisch F, Schróder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy & Environmental Science, 2008,1(1):144-147.
[42]
Yang G Q, Huang L Y, You L X, et al. Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms[J]. Electrochemistry Communications, 2017,77:93-97.
[43]
汤佳,文萍,刘敏如,等.电化学红外光谱解析五氯酚的阴极微生物还原脱氯机制[J]. 中国科学:技术科学, 2019,49(12):1483-1494. Tang J, Wen P, Liu M R, et al. Electrochemical infrared spectroscopy analysis of the cathodic microorganisms of pentachlorophenol[J]. Science China Technological Science, 2019,49(12):1483-1494.
[44]
Ataka K, Heberle J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer[J]. Journal of the American Chemical Society, 2003, 125(17):4986-4987.
[45]
Chen W, Habibul N, Liu X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environmental Science & Technology, 2015,49(4):2052-2058.
[46]
Ataka K, Heberle J. Functional vibrational spectroscopy of a cytochrome c monolayer:SEIDAS probes the interaction with different surface-modified electrodes[J]. Journal of the American Chemical Society, 2004,126(30):9445-9457.
[47]
Sun D, Cheng S A, Wang A J. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms[J]. Environmental Science & Technology, 2015,49(8):5227-5235.
[48]
Blanchet E, Pécastaines S, Erable B, et al. Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes[J]. Bioresource Technology, 2014,173:224-230.
[49]
Eerten-Jansen M C, Veldhoen A B, Plugge C M, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system[J]. Archaea, 2013:481784.
[50]
Polcari D, Philippe D, Mauzeroll J. Scanning electrochemical microscopy:a comprehensive review of experimental parameters from 1989 to 2015[J]. Chemical Reviews, 2016,116(22):13234-13278.
[51]
Koley D, Ramsey M M, Bard A J. Discovery of a biofilm electrocline using real-time 3D metabolite analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):19996-20001.