Preparation of high active anode and its toxicity in amoxicillin degradation
LI Xiao-liang1, WANG Xue2, QIU Xiao-peng1, LU Si-jia1, XIN Feng-dan1, ZHENG Xing1
1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China; 2. Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract:A highly efficient Ti/PbO2 anode with multi catalytic sites was prepared by current regulation, and its morphology, crystalline and electrochemical performance were characterized. Amoxicillin (AMX), a common antibiotic, was used as the target organic compound to investigate its toxicity evolution during the electrocatalytic degradation. Results showed that the surface morphology of electrode surface changed from "pyramid" to "cauliflower" with the increase of deposition current density, but the crystal phase was kept β-PbO2. Meanwhile, the voltammetric capacity increased and the membrane impedance decreased for prepared anode. Toxicity test showed that AMX concentration in water was negatively correlated with the algae density of Scenedesmus obliquus, but it exhibited a "low concentration promotion, high concentration inhibition" effect on the chlorophyll synthesis. In addition, the optimized electrode exhibited a good degradation effect on AMX and the toxicity level of AMX increased first and then decreased during electrocatalytic degradation. The TELItotal value increased from 1.54 to 2.61, and then decreased to 1.63 after 150 minutes. The results of 110 kinds of gene stress showed that AMX had a significant effect on the oxidative stress and protein stress during electrocatalytic degradation.
李晓良, 王雪, 邱晓鹏, 路思佳, 辛凤丹, 郑兴. 高活性阳极制备及阿莫西林降解中的毒性效应[J]. 中国环境科学, 2021, 41(2): 727-734.
LI Xiao-liang, WANG Xue, QIU Xiao-peng, LU Si-jia, XIN Feng-dan, ZHENG Xing. Preparation of high active anode and its toxicity in amoxicillin degradation. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(2): 727-734.
文湘华,申博.新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018,38(3):847-857.Wen X H, Shen B. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018,38(3):847-857.
[2]
刘浩宇,朱瑜,王惠芝,等.渭河杨凌段水系中头孢曲松耐药菌和耐药基因[J]. 中国环境科学, 2020,40(7):3087-3096.Liu H Y, Zhu Y, Wang H Z, et al. Prevalence of ceftriaxone-resistant bacteria and drug-resistance encoding genes in Weihe River and its tributaries in Yangling Section[J]. China Environmental Science, 2020,40(7):3087-3096.
[3]
曾洁仪,曾苏杭,纪梦钿,等.Sakaguchia cladiensis对磺胺甲嘧啶/铜复合污染中抗生素的降解[J]. 中国环境科学, 2019,39(12):5293-5300.Zeng J Y, Zeng S H, Ji M T, et al. Biodegradation of Sulfamethazine in Sulfamethazine/Copper combined pollution by Sakaguchia cladiensis[J]. China Environmental Science, 2019,39(12):5293-5300.
[4]
高金龙,陈轶凡,李纪薇,等.Ti/PbO2电化学法降解废水中三种氟喹诺酮类抗生素[J]. 中国环境科学, 2020,40(6):2454-2463.Gao J L, Chen Y F, Li J W, et al. Degradation of three fluoroquinolones antibiotics in wastewater by Ti/PbO2 electrochemical method[J]. China Environmental Science, 2020,40(6):2454-2463.
[5]
宿程远,郑鹏,廖黎明,等.Fe3O4NPs类芬顿预处理对活性污泥法处理阿莫西林废水的影响[J]. 化工学报, 2018,69(12):5237-5245.Su C Y, Zheng P, Liao L M, et al. Influence of Fe3O4NPs heterogeneous Fenton-like pre-treatment on activated sludge technology for treatment amoxicillin wastewater[J]. CIESC Journal, 2018,69(12):5237-5245.
[6]
Frontistis Z, Antonopoulou M, Venieri D, et al. Boron-doped diamond oxidation of amoxicillin pharmaceutical formulation:Statistical evaluation of operating parameters, reaction pathways and antibacterial activity[J]. Journal of Environmental Management, 2017,195(SI):100-109.
[7]
曹海欧.电化学联合臭氧处理阿莫西林废水的作用效能与机理研究[D]. 哈尔滨:哈尔滨工业大学, 2015.Cao H O. Amoxicillin wastewater degradation by combined electrolysis:A kinetic and mechanism study[D]. Harbin:Harbin Institute of Technology, 2015.
[8]
Chen Z, Wang H, Chen Z, et al. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin[J]. Journal of Hazardous Materials, 2011,185(2/3):905-913.
[9]
Chen G. Electrochemical technologies in wastewater treatment[J]. Separation and Purification Technology, 2004,38(1):11-41.
[10]
Radjenovic J, Sedlak DL. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Scicence & Technology, 2015,49(19):11292-11302.
[11]
Bian X, Xia Y, Zhan T, et al. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode:Electrode characterization, operational parameters optimization and degradation mechanism[J]. Chemosphere, 2019,233:762-770.
[12]
Kaur R, Kushwaha JP, Singh N. Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode:Mechanism, oxidation products and degradation pathway[J]. Electrochimica Acta, 2019,296:856-866.
[13]
Cañizares P, Martı́nez F, Dı́az M, et al. Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes[J]. Journal of The Electrochemical Society, 2002,149(8):D118-D124.
[14]
Tong S, Ma C, Feng H. A novel PbO2 electrode preparation and its application in organic degradation[J]. Electrochimica Acta, 2008, 53(6):3002-3006.
[15]
徐聪,张露瑶,徐劼,等.铟掺杂PbO2电极制备及电催化降解强力霉素[J]. 中国环境科学, 2020,40(8):3441-3448.Xu C, Zhang L Y, Xu J, et al. Preparation of Indium doped PbO2 electrode and its electrocatalytic degradation of doxycycline[J]. China Environmental Science, 2020,40(8):3441-3448.
[16]
Aquino J M, Rocha-Filho R C, Ruotolo L A M, et al. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes[J]. Chemical Engineering Journal, 2014,251:138-145.
[17]
Liu Y, Liu H. Comparative studies on the electrocatalytic properties of modified PbO2 anodes[J]. Electrochimica Acta, 2008,53(16):5077-5083.
[18]
Yao Y, Cui L, Jiao L, et al. Effects of duty cycle on the preparation and property of PbO2-CeO2 nanocomposite electrodes[J]. Journal of Solid State Electrochemistry, 2015,20(3):725-731.
[19]
李晓良,徐浩,延卫.高效Ti/PbO2电极制备及对酸性红G的降解研究[J]. 中国环境科学, 2017,37(7):2591-2598.Li X L, Xu H, Yan W. Studies on the preparation of high efficient Ti/PbO2 electrode and degradation of acid red G[J]. China Environmental Science, 2017,37(7):2591-2598.
[20]
Yan H, Han Z, Zhao H, et al. Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11culture medium[J]. Chinese Journal of Oceanology and Limnology, 2013,32(3):503-510.
[21]
刘永涛,李乐,杨红,等.3种渔用药物对斜生栅藻的毒性效应研究[J]. 生态环境学报, 2017,26(2):261-267.Liu Y T, Li L, Yang H, et al. Toxic effects of three fishery drugs on Scenedesmus obliquus[J]. Ecology and Environmental Sciences, 2017,26(2):261-267.
[22]
Liu Z, Huang R, Roberts R, et al. Toxicogenomics:A 2020 Vision[J]. Trends in Pharmacological Sciences, 2019,40(2):92-103.
[23]
Gou N, Gu A Z. A new transcriptional effect level index (TELI) for toxicogenomics-based toxicity assessment[J]. Environmental Scicence & Technology, 2011,45(12):5410-5417.
[24]
Zhao W, Xing J, Chen D, et al. Study on the performance of an improved Ti/SnO2-Sb2O3/PbO2 based on porous titanium substrate compared with planar titanium substrate[J]. RSC Advances, 2015, 5(34):26530-26539.
[25]
Duan T, Chen Y, Wen Q, et al. Enhanced electrocatalytic activity of nano-TiN composited Ti/Sb-SnO2 electrode fabricated by pulse electrodeposition for methylene blue decolorization[J]. RSC Advances, 2014,4(101):57463-57475.
[26]
Duan X, Li J, Liu W, et al. Fabrication and characterization of a ovel PbO2 electrode with a CNT interlayer[J]. RSC Advances, 2016,6:28927-28936.
[27]
Shao D, Yan W, Li X, et al. Fe3O4/Sb-SnO2 granules loaded on Ti/Sb-SnO2 electrode shell by magnetic force:good recyclability and high electro-oxidation performance[J]. ACS Sustainable Chemistry & Engineering, 2015,3(8):1777-1785.
[28]
秦洪伟,陈柳芳,鲁楠,等.氧氟沙星对斜生栅藻的毒性效应[J]. 环境化学, 2011,30(4):885-886.Qin H W, Chen L F, Lu N, et al. Toxic effect of ofloxacin on Scenedesmus obliquus[J]. Environmental Chemistry, 2011,30(4):885-886.
[29]
朱术超,刘滨扬,陈本亮,等.3种药物及个人护理品对斜生栅藻生长及光系统II的影响[J]. 中山大学学报(自然科学版), 2014,53(1):121-126.Zhu S C, Liu B Y, Chen B L, et al. Effects of three pharmaceuticals and personal care products on growth and photosystem Ⅱ in Scenedesmus obliquus[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014,53(1):121-126.
[30]
Wan J, Guo P, Zhang S. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin[J]. Environmental science and pollution research international, 2014,21(5):3858-3865.
[31]
刘莹莹,张文蕾,侯和胜,等.抗生素在微藻工程中的应用研究进展[J]. 生命科学, 2016,28(9):1010-1015.Liu Y Y, Zhang W L, Hou H S, et al. The research progress on antibiotics in microalgae engineering[J]. Chinese Bulletin of Life Sciences, 2016,28(9):1010-1015.
[32]
麻晓霞,马丽萍,石勋祥,等.微藻对常用抗生素敏感性的研究进展[J]. 微生物学免疫学进展, 2012,40(1):83-86.Ma X X, Ma L P, Shi X X, et al. The research progress of sensitivity of microalgaes to common antibiotics[J]. Progress in Microbiology and Immunology, 2012,40(1):83-86.
[33]
Kaur R, Kushwaha J P, Singh N. Electro-oxidation of amoxicillin trihydrate in continuous reactor by Ti/RuO2 anode[J]. Science of The Total Environment, 2019,677:84-97.
[34]
Gou N, Yuan S, Lan J, et al. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants[J]. Environmental Scicence & Technology, 2014,48(15):8855-8863.
[35]
张玲玲,江善祥.阿莫西林药理与毒理研究进展[J]. 兽药与饲料添加剂, 2009,14(1):20-23.Zhang L L, Jiang S X. Research progress in the pharmacology and toxicology of amoxicillin[J]. Veterinary Pharmaceuticals & Feed Additives, 2009,14(1):20-23.