Key factors influencing hydropower carbon footprint assessment and geo-regional research trends
LI Peng1, BAI Xiao-xuan1, DING Ning2, ZHAO Si-qi2, LI Chao1, ZHOU Wei-qing1, ZHANG Gao-xiang2
1. State Grid Jibei Electric Power Co., Ltd. Electric Power Research Institute, Beijing 100045, China; 2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:This research addressed the issue of low-carbon development in hydropower, provided a review of the key factors influencing the carbon footprint of hydropower and the regional variations in these footprints. The findings of this research indicated an increasing global focus on research into the carbon footprint of hydropower. Case studies revealed that the primary contributors to the hydropower carbon footprint were the manufacture of construction materials and engineering activities during the construction phase, as well as energy consumption by equipment during the operation and maintenance phase. This research identified key factors affecting hydropower carbon emissions, including the type of hydropower, installed capacity, water storage volume, reservoir area, and life cycle stages. Furthermore, from a geographical perspective, it explored the regional variation in hydropower carbon emissions, highlighting the impact of differences in climate, precipitation, and ecological environment due to geographical location on the hydropower carbon footprint.
[1] International Hydropower Association. 2021 hydropower status report[EB/OL].https://www.hydropower.org/publications/2021-hydropower-status-report. 2021/2024-06-21. [2] International Energy Agency. Hydropower special market report-analysis[EB/OL]. IEA. https://www.iea.org/reports/hydropower-special-market-report. 2021/2024-06-21. [3] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[EB/OL]. https://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901004.html. 2021/2024-06-03. National Bureau of Statistics. Statistical communiqué of the People's Republic of China on the national economic and social development in 2020[EB/OL]. https://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901004.html. 2021/2024-06-03. [4] 国务院.国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. 2021/2024-06-21. State Council. Notice of the state council on issuing the carbon peak action plan before 2030_environmental monitoring, protection and governance_[EB/OL]. https://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. 2021/2024-06-21. [5] Kadiyala A, Kommalapati R, Huque Z. Evaluation of the life cycle greenhouse gas emissions from hydroelectricity generation systems[J]. Sustainability, Multidisciplinary Digital Publishing Institute, 2016, 8(6):539. [6] Kumar A, Yu Z G, Klemeš J J, et al. A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs[J]. Journal of Cleaner Production, 2021,320:128806. [7] Steinhurst W, Patrick K. Hydropower greenhouse gas emissions[J]. Conservation Law Foundation, 2012,24(6):1-26. [8] Gemechu E, Kumar A. A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy[J]. Renewable and Sustainable Energy Reviews, 2022,167:112684. [9] International Hydropower Association. Hydropower's carbon footprint[EB/OL]. https://www.hydropower.org/factsheets/greenhouse-gas-emissions./2024-06-25. [10] Hertwich E G. Addressing biogenic greenhouse gas emissions from hydropower in LCA[J]. Environmental Science& Technology, 2013, 47(17):9604-9611. [11] 侯剑华,胡志刚.CiteSpace软件应用研究的回顾与展望[J].现代情报, 2013,33(4):99-103. Hou J H, Hu Z G. Review and prospect of citespace software application research[J]. Modern Intelligence, 2013,33(4):99-103. [12] 张宁,张盛,杨海超,等.粤港澳大湾区土壤污染问题计量及可视化分析[J].环境科学, 2019,40(12):5581-5592. Zhang N, Zhang S, Yang H C, et al. Quantitative and visual analysis of soil pollution problems in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Environmental Science, 2019,40(12):5581-5592. [13] Gunkel G. Hydropower-A green energy?Tropical reservoirs and greenhouse gas emissions[J]. Clean-Soil, Air, Water, 2009,37(9):726-734. [14] Briones-Hidrovo A, Uche J, Martínez-Gracia A. Determining the net environmental performance of hydropower:A new methodological approach by combining life cycle and ecosystem services assessment[J]. Science of the Total Environment, 2020,712:136369. [15] 杜海龙.金沙江大型水电站碳足迹的生命周期分析研究[D].重庆:中国科学院大学(中国科学院重庆绿色智能技术研究院), 2018. Du H L. Research on the life cycle analysis of carbon footprint of large hydropower stations on the Jinsha River[D]. Chongqing:University of Chinese Academy of Sciences (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences), 2018. [16] Li Z, Du H, Xu H, et al. The carbon footprint of large-and mid-scale hydropower in China:Synthesis from five China's largest hydro-project[J]. Journal of Environmental Management, 2019,250:109363. [17] Siddiqui O, Dincer I. Comparative assessment of the environmental impacts of nuclear, wind and hydro-electric power plants in Ontario:A life cycle assessment[J]. Journal of Cleaner Production, 2017,164:848-860. [18] 黄跃群,刘耀儒,许文彬,等.水利水电工程全生命周期碳排放研究--以犬木塘工程为例[J].清华大学学报(自然科学版), 2022,(8vo 62):1366-1373. Huang Y Q, Liu Y R, Xu W B. Study on carbon emissions during the whole life cycle of water conservancy and hydropower projects:A case study of the Quanmutang project[J]. Journal of Tsinghua University (Science and Technology), 2022,(8vo 62):1366-1373. [19] Zhang Q, Karney B, MacLean H L, et al. Life-cycle inventory of energy use and greenhouse gas emissions for two hydropower projects in China[J]. Journal of Infrastructure Systems, 2007,13(4):271-279. [20] Wang J, Chen X, Liu Z, et al. Assessing the water and carbon footprint of hydropower stations at a national scale[J]. Science of the Total Environment, 2019,676:595-612. [21] 林雷.凉头水电站技改项目风险管理研究[D].昆明:昆明理工大学, 2014. Lin L. Research on risk management of Liangtou Hydropower Station technical transformation project[D]. Kunming:Kunming University of Science and Technology, 2014. [22] Quintana-Pedraza G A, Vieira-Agudelo S C, Muñoz-Galeano N. A cradle-to-grave multi-pronged methodology to obtain the carbon footprint of electro-intensive power electronic products[J]. Energies, Multidisciplinary Digital Publishing Institute, 2019,12(17):3347. [23] Bhat V I K, Prakash R. Life cycle analysis of run-of river small hydro power plants in India[J]. The Open Renewable Energy Journal, 2008, 1(1):11-16. [24] Varun, Prakash R, Bhat I K. Life cycle greenhouse gas emissions estimation for small hydropower schemes in India[J]. Energy, 2012, 44(1):498-508. [25] 雷冬梅,徐晓勇,胡斌,等.水电开发对流域自然生态系统影响的研究[J].安徽农业科学, 2010,(29vo 38):16401-16403,16406. Lei D M, Xu X Y, Hu B, et al. Research on the impact of hydropower development on the natural ecosystem of the basin[J]. Journal of Anhui Agricultural Sciences, 2010,(29vo 38):16401-16403,16406. [26] Franchetti M J, Apul D. Carbon footprint analysis:Concepts, methods, implementation, and case studies[M]. New York:CRC Press, 2012. [27] Lu C, Ma C, Zhang Y, et al. Ecological Footprint of Hydropower Development in China and the Associated Reductions of Greenhouse Gas Emission[J]. Journal of Resources and Ecology, 2013,4(4):369-373. [28] Bello M O, Solarin S A, Yen Y Y. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint:The role of hydropower in an emerging economy[J]. Journal of Environmental Management, 2018,219:218-230. [29] 刘宇,任品桥,郑焱,等.水力发电生命周期评价及碳足迹区域化分析[J].北京工业大学学报, 2024,50(3):282-289. Liu Y, Ren P Q, Zheng Y, et al. Life cycle assessment and regional analysis of carbon footprint of hydropower[J]. Journal of Beijing University of Technology, 2024,50(3):282-289. [30] 邹一雄,刘羽.小型水电站生命周期碳足迹研究[J].水电与新能源, 2020,34(2):31-35. Zou Y X, Liu Y. Study on the life cycle carbon footprint of small hydropower stations[J]. Hydropower and New Energy, 2020,34(2):31-35. [31] Li X, Gui F, Li Q. Can hydropower still be considered a clean energy source?Compelling evidence from a middle-sized hydropower station in China[J]. Sustainability, 2019,11(16):4261. [32] 侯公羽,马骁赟,杨振华,等.抽水蓄能电站全生命周期碳排放计算与分析[J].中国环境科学, 2023,43(S1):326-335. Hou G Y, Ma X Y, Yang Z H, et al. Calculation and analysis of carbon emissions over the entire life cycle of pumped storage power stations[J]. Chinese Environmental Science, 2023,43(S1):326-335. [33] Liu X, Zheng X, Wu L, et al. Techno-ecological synergies of hydropower plants:Insights from GHG mitigation[J]. Science of the Total Environment, 2022,853:158602. [34] Water Power Technologies Office. Tracking the carbon footprint of hydropower[EB/OL]. https://www.energy.gov/eere/water/tracking-carbon-footprint-hydropower. 2024/2024-06-20. [35] Aung T S, Fischer T B, Azmi A S. Are large-scale dams environmentally detrimental?Life-cycle environmental consequences of mega-hydropower plants in Myanmar[J]. The International Journal of Life Cycle Assessment, 2020,25(9):1749-1766. [36] 夏欣.溪洛渡水电站生命周期环境影响分析[J].水电站设计, 2022,38(4):71-75. Xia X. Life cycle environmental impact analysis of Xiluodu Hydropower Station[J]. Hydropower Station Design, 2022,38(4):71-75. [37] 杜海龙,王文忠.清江隔河岩水电开发的综合碳减排效益分析[J].长江科学院院报, 2024,41(11):49-55,74. Du H L, Wang W Z. Comprehensive carbon emission reduction benefit analysis of Geheyan hydropower development in Qingjiang River[J]. Journal of Yangtze River Scientific Research Institute, 2024,41(11):49-55,74. [38] 杜海龙,魏俊,李哲.基于ISO14067评估可渡河水电开发碳减排潜力[J].人民珠江, 2017,38(12):45-49. Du H L, Wei J, Li Z. Evaluating the carbon emission reduction potential of Keduhe hydropower development based on ISO14067[J]. People's Pearl River, 2017,38(12):45-49. [39] Ribeiro F D M, Da Silva G A. Life-cycle inventory for hydroelectric generation:a Brazilian case study[J]. Journal of Cleaner Production, 2010,18(1):44-54. [40] Bor A,Üçtuğ F G. Environmental and economic life cycle assessment of a run‐of‐the‐river type hydroelectricity power plant in Turkey[J]. Environmental Progress& Sustainable Energy, 2022,41(1):e13716. [41] Briones Hidrovo A, Uche J, Martínez-Gracia A. Accounting for GHG net reservoir emissions of hydropower in Ecuador[J]. Renewable Energy, 2017,112:209-221. [42] Geller M, Meneses A A D M. Life cycle assessment of a small hydropower plant in the Brazilian Amazon[J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2016,4(4):379-391. [43] Zhang S, Pang B, Zhang Z. Carbon footprint analysis of two different types of hydropower schemes:comparing earth-rockfill dams and concrete gravity dams using hybrid life cycle assessment[J]. Journal of Cleaner Production, 2015,103:854-862. [44] Zhang J, Xu L. Embodied carbon budget accounting system for calculating carbon footprint of large hydropower project[J]. Journal of Cleaner Production, 2015,96:444-451. [45] Verán-Leigh D, Vázquez-Rowe I. Life cycle assessment of run-of-river hydropower plants in the Peruvian Andes:A policy support perspective[J]. The International Journal of Life Cycle Assessment, 2019,24(8):1376-1395. [46] Barros M V, Piekarski C M, De Francisco A C. Carbon footprint of electricity generation in Brazil:An analysis of the 2016~2026 Period[J]. Energies, 2018,11(6):1412. [47] Denholm P, Kulcinski G L. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion and Management, 2004,45(13/14):2153-2172. [48] Gagnon L, Van De Vate J F. Greenhouse gas emissions from hydropower[J]. Energy Policy, 1997,25(1):7-13. [49] Rule B M, Worth Z J, Boyle C A. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand[J]. Environmental Science& Technology, 2009,43(16):6406-6413. [50] Yumpu.com. EPD Run-of-river Power Plant Wildegg-Brugg-Axpo[EB/OL]. https://www.yumpu.com/en/document/read/7299827/epd-run-of-river-power-plant-wildegg-brugg-axpo. 2016/2024-07-01. [51] Arnøy S, Modahl I S. Life cycle data for hydroelectric generation at Embretsfoss 4(E4) power station[R]. OR.03.13, Energy Buskerud Co., 2013. [52] Donnelly C R, Carias A, Ali M, et al. An assessment of the life cycle costs and GHG emissions for alternative generation technologies[EB/OL]. https://www.osti.gov/etdeweb/servlets/purl/21397681.2010/2025-01-15. [53] Hanafi J, Riman A. Life cycle assessment of a mini hydro power plant in Indonesia:A case study in Karai River[J]. Procedia CIRP, 2015, 29:444-449. [54] Oliveira L, Messagie M, Mertens J, et al. Environmental performance of electricity storage systems for grid applications, a life cycle approach[J]. Energy Conversion and Management, 2015,101:326-335. [55] Ueda T, Roberts E S, Norton A, et al. A life cycle assessment of the construction phase of eleven micro-hydropower installations in the UK[J]. Journal of Cleaner Production, 2019,218:1-9. [56] Gallagher J, Styles D, McNabola A, et al. Life cycle environmental balance and greenhouse gas mitigation potential of micro-hydropower energy recovery in the water industry[J]. Journal of Cleaner Production, 2015,99:152-159. [57] DL5180-2003水电枢纽工程等级划分及设计安全标准[S]. DL5180-2003 Classification and design safety standards for hydropower hub projects[J]. [58] Turner S W D, Hejazi M, Kim S H, et al. Climate impacts on hydropower and consequences for global electricity supply investment needs[J]. Energy, 2017,141:2081-2090. [59] 四川省生态环境厅.2022年四川省生态环境状况公报[EB/OL]. https://sthjt.sc.gov.cn/sthjt/c104157/2023/6/5/644b1b19bbe249cb8b302ae8de2f1538.shtml. 2023/2024-06-20. Sichuan Provincial Department of Ecology and Environment. 2022Sichuan provincial ecological environment bulletin[EB/OL]. https://sthjt.sc.gov.cn/sthjt/c104157/2023/6/5/644b1b19bbe249cb8b302ae8de2f1538.shtml. 2023/2024-06-20. [60] 四川省水利厅.2017年四川省水资源公报[EB/OL]. http://slt.sc.gov.cn/scsslt/szyzwgk/2020/3/9/22121685d4cc4cd6beec059cc7bf977e.shtml. 2020/2024-06-20. Sichuan Provincial Water Resources Department. 2017 Sichuan provincial water resources bulletin[EB/OL]. http://slt.sc.gov.cn/scsslt/szyzwgk/2020/3/9/22121685d4cc4cd6beec059cc7bf977e.shtml. 2020/2024-06-20. [61] 云南省水利厅.2017年云南省水资源公报[EB/OL]. http://wcb. yn.gov.cn/html/2018/shuiziyuangongbao-tongji_1029/52741.html. 2018/2024-06-20. Yunnan Provincial Water Resources Department. Yunnan provincial water resources bulletin 2017[EB/OL]. http://wcb.yn.gov.cn/html/2018/shuiziyuangongbao-tongji_1029/52741.html. 2018/2024-06-20. [62] 云南省水利厅.省水文局编发《2022年云南水文情势报告》_云南省水利厅[EB/OL]. http://wcb.yn.gov.cn/html/2023/yewuzhuanlan_0315/56088.html. 2023/2024-06-20. Yunnan Provincial Department of Water Resources. The provincial hydrological bureau compiled and issued the"2022 Yunnan Hydrological Situation Report"_Yunnan Provincial Department of Water Resources[EB/OL]. http://wcb.yn.gov.cn/html/2023/yewuzhuanlan_0315/56088.html. 2023/2024-06-20. [63] Pascale A, Urmee T, Moore A. Life cycle assessment of a community hydroelectric power system in rural Thailand[J]. Renewable Energy, 2011,36(11):2799-2808. [64] Islam Miskat M, Ahmed A, Rahman Md S, et al. An overview of the hydropower production potential in Bangladesh to meet the energy requirements[J]. Environmental Engineering Research, 2020,26(6):200514-0. [65] Pang M, Zhang L, Wang C, et al. Environmental life cycle assessment of a small hydropower plant in China[J]. The International Journal of Life Cycle Assessment, 2015,20(6):796-806. [66] Mallia E, Lewis G. Life cycle greenhouse gas emissions of electricity generation in the province of Ontario, Canada[J]. The International Journal of Life Cycle Assessment, 2013,18(2):377-391. [67] Barros N, Cole J J, Tranvik L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011,4(9):593-596. [68] IPCC. Hydropower[EB/OL]. https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/hydropower/.2011/2024-07-01. [69] IPCC. Renewable Energy Sources and Climate Change Mitigation[EB/OL]. https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/. 2011/2024-07-01. [70] Fearnside P M. Emissions from tropical hydropower and the IPCC[J]. Environmental Science& Policy, 2015,50:225-239. [71] Abril G, Parize M, Pérez M A P, et al. Wood decomposition in Amazonian hydropower reservoirs:An additional source of greenhouse gases[J]. Journal of South American Earth Sciences, 2013,44:104-107. [72] Chu Y, Pan Y, Zhan H, et al. Systems accounting for carbon emissions by hydropower plant[J]. Sustainability, 2022,14(11):6939.