Comparative study on carbon footprint of sludge ceramsite and fly ash ceramsite
SONG Xiao-cong1, DU Shuai2, DENG Chen-ning1, SHEN Peng1, ZHU Fang1, XIE Ming-hui1
1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Chinese Research Academy of Environmental Sciences Environmental Technology & Engineering Co., Ltd., Beijing 100012, China
Abstract:Sludge ceramsite and fly ash ceramsite are the two most common types of solid waste ceramsite. To compare and analyze the carbon footprint characteristics of the two types of solid waste ceramsite and quantitatively evaluate the carbon reduction benefits of the products, a carbon footprint accounting model for sludge ceramsite and fly ash ceramsite is constructed from the perspective of carbon footprint. Based on sensitivity analysis, key emission reduction factors are identified, and the carbon reduction potential of sludge ceramsite and fly ash ceramsite is predicted and evaluated through scenario analysis. Meanwhile, using error propagation equations for uncertainty analysis ensures the reliability and effectiveness of carbon footprint results. The results showed that the CO2 emissions from the production of 1kg sludge ceramsite and 1kg fly ash ceramsite were 1.00 and 0.58 kg, respectively. The carbon footprint characteristics of sludge ceramsite and fly ash ceramsite were similar, and the ceramsite production stage was the main link in the carbon emissions of the two ceramsite particle products, accounting for 93.71% and 89.12% of their respective carbon footprints (excluding the raw material acquisition stage), respectively. The raw material structure is the most sensitive factor affecting the carbon footprint of sludge ceramsite and fly ash ceramsite, followed by the transportation structure. Compared with sludge ceramsite, the carbon footprint of fly ash ceramsite is more affected by the adjustment of raw material structure. In the scenario of collaborative optimization, the carbon emission reduction potential of simultaneously optimizing transportation and raw material structure (31%~78%) is far higher than that of simultaneously optimizing transportation and power structure (2%~5%). In addition, the emission reduction potential of the three factors acting simultaneously is the highest, reaching 33%~79%.
[1] Ma X T, Zhang T Z, Shen X Q, et al. Environmental footprint assessment of China's ceramic tile production from energy-carbon- water nexus insight [J]. Journal of Cleaner Production, 2022,337: 130606. [2] Wang Y, Liu Y, Cui S, et al. Comparative life cycle assessment of different fuel scenarios and milling technologies for ceramic tile production: a case study in China [J]. Journal of Cleaner Production, 2020,273:122846. [3] Mallapaty S. How China could be carbon neutral by mid-century [J]. Nature, 2020,586(7830):482-483. [4] 习近平.继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话 [J]. 中国环境监察, 2020,(12):9. Xi J P. Building on past achievements and launching a new journey for global climate actions-statement at the climate ambition summit [J]. China Environment Supervision, 2020,(12):9. [5] 李惠娴,李寿德,杨寰宇,等.同心聚力共谋行业绿色发展(一) ——2021年陶粒产业调研报告 [J]. 砖瓦, 2021,(10):44-48. Li H X, Li S D, Yang H Y, et al. Unity and collaboration for green development in the industry (I)-2021ceramsite industry research report [J]. Brick-Tile, 2021,(10):44-48. [6] 李惠娴,李寿德,杨寰宇,等.同心聚力共谋行业绿色发展(二)—— 2021年陶粒产业调研报告 [J]. 砖瓦, 2021,(12):51-56. Li H X, Li S D, Yang H Y, et al. Unity and collaboration for green development in the industry (Ⅱ)-2021ceramsite industry research report [J]. Brick-Tile, 2021,(12):51-56. [7] 谢思松.“小”陶粒开启固废应用“大”世界 [N]. 中国建材报, 2023- 09-04(003). Xie S S. " Small " ceramic particles open up the application of solid waste in the "big" world [N]. China building materials daily, 2023-09- 04(003). [8] Xue Y J, Lin X C, Zhang H H, et al. Onsite treatment of wastes in municipal waste incinerator: co-sintering of fly ash and leachate sludge into value-added ceramic granule [J]. Heliyon, 2023,9(10): 20301. [9] Tong L Q, Ji K Q, Yang J X, et al. Sludge-based ceramsite for environmental remediation and architecture ingredients [J]. Journal of Cleaner Production, 2024,448:141556. [10] Li J,Yu G W, Xie S Y, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar [J]. Science of the Total Environment, 2018,628-629:131-140. [11] Meng J P, Cui Z X, Srinivasakannan C, et al. Preparation of porous ceramsite from municipal sludge and its structure characteristics [J]. Advances in Applied Ceramics: Structural, Functional and Bioceramics, 2023,122(5-8):322-335. [12] 陈 芳,冯奕程,吴佳育,等.市政污泥陶粒制备及其资源化利用研究进展 [J/OL]. 材料导报, http://kns.cnki.net/kcms/detail/50.1078.TB.20240320.1037.013.html 2024-05-15. Chen F, Feng Y C, Wu J Y, et al. Research progress on unburned ceramisite preparation technologies of fly ash [J/OL]. Materials Reports, http://kns.cnki.net/kcms/detail/50.1078.TB.20240320.1037.013.html 2024-05-15. [13] Wang C Q, Duan D Y, Huang D M, et al. Lightweight ceramsite made of recycled waste coal gangue & municipal sludge: Particular heavy metals, physical performance and human health [J]. Bioresource Technology, 2022,376:134309. [14] Zhang Z Y, Zhao M Y, Zhang Y S, et al. The solidification and volatilization behavior of heavy metal ions in ceramic proppant made from fly ash [J]. Bioresource Technology, 2023,49(17):28326-28336. [15] Tang Y Y, Chan S W, Shih K. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials [J]. Waste Management, 2014,34(6):1085-1091. [16] Nguyen S, Thai Q, Ho L. Properties of fine-grained concrete containing fly ash and bottom ash [J]. Magazine of Civil Engineering, 2022,7(107):10711-10720. [17] Mao H B, Zhang Y Y, Wang H, et al. Recycling sewage sludge into ceramic materials: a review [J]. Environmental Chemistry Letters, 2023,21:1659-1672. [18] Małaszkiewicz D, Jastrzębski D. Lightweight self-compacting concrete with sintered fly-ash aggregate [J]. Scientific Review Engineering and Environmental Sciences, 2018,27(3):328-337. [19] De Souza D M, Lafontaine M, Charron-Doucet F, et al. Comparative life cycle assessment of ceramic brick, concrete brick and cast-in- place reinforced concrete exterior walls [J]. Journal of Cleaner Production, 2016,137:70-82. [20] Letícia M M, Ahmed W H, Mohammad K N, et al. Comparison of the environmental performance of ceramic brick and concrete blocks in the vertical seals' subsystem in residential buildings using life cycle assessment [J]. Cleaner Engineering and Technology, 2021,5:100243. [21] 赵飞燕,张小东,杜艳霞,等.粉煤灰陶粒的制备技术及研究进展 [J]. 无机盐工业, 2024,56(4):16-23. Zhao F Y, Zhang X D, Du Y X, et al. Preparation technology and research progress of fly ash ceramsite [J]. Inorganic Chemicals Industry, 2024,56(4):16-23. [22] 孟凡宁,武 陈,王 岽,等.粉煤灰免烧陶粒制备技术研究进展 [J]. 化工环保, 2024,44(3):301-306. Meng F N, Wu C, Wang D, et al. Research progress on unburned ceramisite preparation technologies of fly ash [J]. Environmental Protection of Chemical Industry, 2024,44(3):301-306. [23] 王 娜,王沛祎,李永超,等.粉煤灰高强陶粒制备研究 [J]. 水泥, 2022,(11):50-53. Wang N, Wang P W, Li Y C. Research on the preparation of high- strength ceramic particles from fly ash [J]. Cement, 2022,(11):50-53. [24] 段凯强,谢慧娟,范智禹,等.赤泥-粉煤灰免烧陶粒的制备及应用 [J]. 非金属矿, 2023,46(1):43-46. Duan K Q, Xie H J, Fan Z Y, et al. Preparation and characterization of red mud and fly ash non-fired ceramsite [J]. Non-Metallic Mines, 2023,46(1):43-46. [25] Shi X, Geng C, Li Q M, et al. A novel application for magnetite tailings and municipal sludge in ceramsite preparation [J]. Environmental Progress and Sustainable Energy, 2024,43(1):14239. [26] Guo P, Zhao Z, Li Y, et al. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: Optimization, mechanism, and assessment [J]. Journal of Environmental Management, 2023,348: 119273. [27] 王 俭,李 鑫,王芷馨,等.市政污泥陶粒的制备及其在水处理中应用的研究进展 [J]. 辽宁大学学报(自然科学版), 2023,50(4):340- 347. Wang J, Li X, Wang Z X, et al. Preparation of ceramsite from municipal sludge and its application in water treatment [J]. Journal of Liaoning University (Natural Sciences Edition), 2023,50(4):340-347. [28] 钟嘉利,罗居海,陈孝娥.污泥陶粒的制备及应用研究现状 [J]. 全面腐蚀控制, 2023,37(8):71-74. Zhong Z L, Luo J H, Chen X E. Preparation of sludge ceramide and its application research status [J]. Experience Exchange, 2023,37(8):71- 74. [29] Su Y L, Li F, He Z Q, et al. Artificial aggregates could be a potential way to realize microbial self-healing concrete: An example based on modified ceramsite [J]. Journal of Building Engineering, 2021,35: 102082. [30] Zhou J P, Ji L, Gong C C, et al. Ceramsite vegetated concrete with water and fertilizer conservation and light weight: effect of w/c and fertilizer on basic physical performances of concrete and physiological characteristics of festuca arundinacea [J]. Construction and Building Materials, 2020,236:117785. [31] Dong L, Qi Z P, Li M Q, et al. Organics and nutrient removal from swine wastewater by constructed wetlands using ceramsite and magnetite as substrates [J]. Journal of Environmental Chemical Engineering, 2021,9(1):104739. [32] Chen Y C, Shi J W, Rong H, et al. Adsorption mechanism of lead ions on porous ceramsite prepared by co-combustion ash of sewage sludge and biomass [J]. Science of the Total Environment, 2020,702:135017. [33] 郝禅光,李春立,李 权,等.污泥陶粒的功能化改性及含磷废水处理研究 [J]. 功能材料, 2024,55(4):4142-4151. Hao C G, Li C L, Li Q, et al. Study on functional modification of sludge ceramsite and treatment of wastewater containing phosphorus [J]. Journal of Functional Materials, 2024,55(4):4142-4151. [34] 莎茹拉,郭大立,金翠叶.褐煤粉煤灰陶粒的制备方法及其对重金属废水净化性能的研究 [J]. 赤峰学院学报(自然科学版), 2022,38 (10):63-67. Sha R L, Guo D L, Jin C Y. Preparation method of brown coal powder fly ash ceramic particles and their purification performance for heavy metal wastewater [J]. Journal of Chifeng University (Natural Science Edition), 2022,38(10):63-67. [35] 李 杰,潘兰佳,余广炜,等.污泥生物炭制备吸附陶粒 [J]. 环境科学, 2017,38(9):3970-3978. Li J, Pan L J, Yu G W, et al. Preparation of adsorption ceramsite derived from sludge biochar [J]. Environmental Science, 2017,38(9): 3970-3978. [36] 刘 畅.盐冻作用下粉煤灰陶粒混凝土的宏、微观损伤机理研究 [D]. 新疆:新疆农业大学, 2023. Liu C. Study on macro and micro damage mechanism of fly ash ceramsite concrete under salt freezing effect [D]. Xinjiang: Xinjiang Agricultural University, 2023. [37] 冯 琢.粉煤灰页岩陶粒混凝土力学与导热性能试验研究 [J]. 当代化工, 2022,51(11):2545-2548. Feng Z. Experimental study on mechanical properties and thermal conductivity of fly ash shale ceramsite concrete [J]. Contemporary Chemical Industry, 2022,51(11):2545-2548. [38] 周 越,葛 坚,陆 江.生物污泥陶粒加气混凝土砌块生命周期CO2排放量解析 [J]. 新型建筑材料, 2017,44(4):34-38,51. Zhou Y, Ge J, Lu J. Analysis on carbon emission for biological sewage sludge ceramsite aerated concrete block based on life cycle assessment [J]. New Building Materials, 2017,44(4):34-38,51. [39] 房明慧.典型墙体材料的生命周期评价 [D]. 北京:北京工业大学, 2013. Fang M H. The life cycle assessment of typical wall materials [D]. Beijing:Beijing University of Technology, 2013. [40] 毛睿昌.基于LCA的城市交通基础设施环境影响分析研究—以深圳为例 [D]. 深圳:深圳大学, 2017. Mao R C. Assessing the environmental impacts of urban transport infrastructure via life cycle assessment: case study of a mega city Shenzhen, China [D]. Shenzhen: Shenzhen University, 2017. [41] IPCC. Good practice guidance and uncertainty management in national greenhouse gas inventories [EB/OL]. https://www.ipcc-nggip.iges.or.jp/public/gp/chinese/gpgaum_cn.html 2001-06-15. [42] 彭 卓,郭春梅,汪磊磊,等.绿色建筑全生命周期CO2排放敏感性与减碳潜力研究 [J]. 天津城建大学学报, 2021,27(6):436-441. Peng Z, Guo C M, Wang L L, et al. Total life-cycle analysis of CO2 emission sensitivity and reduction potential of green building [J]. Journal of Tianjin Chengjian University, 2021,27(6):436-441. [43] 张 晔,宋国华,尹 航,等.综合交通运输系统碳排放预测的不确定性分析 [J]. 交通运输工程与信息学报, 2023,21(1):64-79. Zhang Y, Song G H, Yin H, et al. Uncertainty analysis of future carbon emissions of integrated transportation system [J]. Journal of Transportation Engineering and Information, 2023,21(1):64-79. [44] 蔡博峰,朱松丽,于胜民,等.《IPCC 2006年国家温室气体清单指南2019修订版》解读 [J]. 环境工程, 2019,37(8):1-11. Cai B F, Zhu S L, Yu S M, et al. The interpretation of 2019refinement to the 2006IPCC guidelines for national greenhouse gas inventory [J]. Environmental Engineering, 2019,37(8):1-11. [45] 程 豪.碳排放怎么算-《2006年IPCC国家温室气体清单指南》[J]. 中国统计, 2014,(11):28-30. Cheng H. How to calculate carbon emissions - 2006IPCC guidelines for national greenhouse gas inventory [J]. China Statistics, 2014,(11): 28-30. [46] 陈海红,李鹏程,王中航. GB/T 2589-2020《综合能耗计算通则》国家标准解读 [J]. 标准科学, 2021,(12):107-111. Chen H H, Li P C, Wang Z H. Interpretation of national standard GB/T 2589-2020, general rules for calculation of the comprehensive energy consumption [J]. Standard Science, 2021,(12):107-111. [47] 王琢璞.新能源汽车动力电池回收利用潜力及生命周期评价 [D]. 北京:清华大学, 2018. Wang Z P. Potential and life cycle assessment of recycling of power batteries for new energy vehicles [D]. Beijing: Tsinghua University, 2018. [48] 周 越.浙江省建筑外墙保温体系物化过程CO2排放研究 [D]. 浙江:浙江大学, 2017. Zhou Y. Research of CO2 emission of building external wall insulation system in materialization procession Zhejiang province [D]. Zhejiang: Zhejiang University, 2017. [49] GB/T 51366-2019 建筑碳排放计算标准 [S]. GB/T 51366-2019 Calculation standard for building carbon emissions [S]. [50] 电车资源.特百佳动力王永刚:为市场提供全方位新能源商用驱动解决方案 [EB/OL]. https://mp.weixin.qq.com/s/VmnllUU33P5rZzoaD0-XzQ 2022-01-02. Tram resources. TeBaiJia power wang yonggang: providing comprehensive new energy commercial drive solutions for the market [EB/OL]. https://mp.weixin.qq.com/s/VmnllUU33P5rZZoaD0-XzQ 2022-01-02. [51] 中国铁路总公司.2018~2020年货运增量行动方案 [EB/OL]. http://www.china-railway.com.cn/xwzx/ywsl/201812/t20181214_77740.html 2018-07-02. China Railway Corporation. 2018-2020freight incremental action plan [EB/OL]. http://www.china-railway.com.cn/xwzx/ywsl/201812/t20181214_77740.html 2018-07-02. [52] 王 波.基于生命周期评价的深圳市建筑垃圾处理模式研究 [D]. 武汉:华中科技大学, 2012. Wang B. Research of Shenzhen construction wastes management base on life cycle assessment [D]. Wuhan: Huazhong University of Science and Technology, 2012. [53] 《江苏交通年鉴》编辑部.江苏交通年鉴 [M]. 2022. Jiangsu Transportation Yearbook Editorial Department. Jiangsu transportation yearbook [M]. 2022. [54] 肖利涛,秦朝葵.陶粒生产工艺与节能措施 [J]. 工业炉, 2014,36(5): 24-27. Xiao L T, Qin C K. Production process and energy-saving measures of ceramsite [J]. Industrial Furnace, 2014,36(5):24-27. [55] 张晓梅,庄贵阳,刘 杰.城市温室气体清单的不确定性分析 [J]. 环境经济研究, 2018,3(1):8-18,149. Zhang X M, Zhuang G Y, Liu J. Uncertainty analysis of urban greenhouse gas inventories [J]. Journal of Environmental Economics, 2018,3(1):8-18,149. [56] 宋晓聪,邓陈宁,沈 鹏,等.基于生命周期评价的纯电动汽车环境影响和碳足迹分析 [J]. 环境科学研究, 2023,36(11):2179-2188. Song X C, Deng C N, Shen P, et al. Environmental impact and carbon footprint analysis of pure electric vehicles based on life cycle assessment [J]. Research of Environmental Sciences, 2023,36(11): 2179-2188. [57] 宋晓聪,杜 帅,邓陈宁,等.钢铁行业生命周期碳排放核算及减排潜力评估 [J]. 环境科学, 2023,44(12):6630-6642. Song X C, Du S, Deng C N. Life cycle carbon emission accounting and emission reduction potential assessment of steel industry [J]. Environmental Science, 2023,44(12):6630-6642. [58] 林水静.我国更新电力二氧化碳排放因子 [N]. 中国能源报, 2024-04-22(010). Lin S J. China updates carbon dioxide emission factors for electricity [N]. China Energy News, 2024-04-22(010). [59] 冯玉林,高 鸽,柴喜林,等.城市污泥尾矿陶粒的制备工艺及其性能与应用 [J]. 硅酸盐通报, 2023,42(4):1374-1383. Feng Y L, Gao G, Chai X L, et al. Bulletin of the Chinese ceramic society, 2023,42(4):1374-1383. [60] 杨继林.粉煤灰及其高附加值化利用 [EB/OL]. https://mp.weixin.qq.com/s/LiqafdqMsLmMnnUIHVxfUA 2023-12-25. Yang J L. Fly ash and its high value-added utilization [EB/OL]. https://mp.weixin.qq.com/s/LiqafdqMsLmMnnUIHVxfUA 2023-12-25. [61] GESOǦLU M, GÜNEYISI E, ÖZTURAN T, et al. Permeation characteristics of self-compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates [J]. Construction Building Materials, 2014,59:1-9. [62] Preparation of ceramsite from municipal sludge and its application in water treatment: a review [J]. Journal of Environmental Management, 2021,287:112374. [63] Chen Q W, Lai X, Gu H H, et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China [J]. Journal of Cleaner Production, 2022,369:133342.