The impact of height/diameter ratio on aerobic granular sludge(AGS) system in domestic sewage
LI Dong1, WANG Ying-qiao1, ZHANG Jie1,2, LI Shuai2, WANG Yu-ying1
1. Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China;
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
Three column Sequencing Batch Reactor (SBR) (R1, R2, R3) with reactor height/diameter ratio of 3:1, 4.5:1 and 6:1 were used in this experiment. The actual domestic sewage was taken as influent and inoculate the sludge returned from the secondary sedimentation tank of the sewage treatment plant. Study the impact of SBR height/diameter ratio on the formation,nitrogen and phosphorus removal and decarburization of aerobic granular sludge in domestic sewage. The results showed that R1, R2, R3 are started successfully with 42,35 and 28d respectively. The average size of the aerobic granular sludge in R1, R2 and R3 are 750, 900 and 1100μm when the granules have matured. In the start-up stage, The removal rates of TN of R1, R2 and R3 are 66%, 61% and 62%, respectively. After the granular sludge matured, the effluent of R1, R2 and R3 all reachesⅠA standard of the Urban Sewage Treatment Plant Pollutant Discharge Standard of China, and the removal rates of TN, TP and COD are 79%, 85% and 91%, 91%, 93% and 94% and 89%, 92% and 93% respectively. Further analysis shows that within the scope of this experimental study, the increase of SBR height/diameter ratio is beneficial to the formation of aerobic granular sludge and increasing the size, so that the precipitation performance and the simultaneous, nitrogen and phosphorus removal performance improved.
李冬, 王樱桥, 张杰, 李帅, 王玉颖. 高径比对生活污水好氧颗粒污泥系统的影响[J]. 中国环境科学, 2019, 39(1): 141-148.
LI Dong, WANG Ying-qiao, ZHANG Jie, LI Shuai, WANG Yu-ying. The impact of height/diameter ratio on aerobic granular sludge(AGS) system in domestic sewage. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(1): 141-148.
《中国能源》编辑部.2017中国生态环境状况公报发布[J]. 中国能源, 2018,40(6):1-1. editorial department. China bulletin on the state of ecological environment in 2017[J]. Energy of China, 2018,40(6):1-1.
[2]
高景峰,陈冉妮,苏凯,等.好氧颗粒污泥同时脱氮除磷实时控制的研究[J]. 中国环境科学, 2010,30(2):180-185. Gao J F, Chen R N, Su K, et al. Real time control of simultaneous nitrogen and phosphorus removal by aerobic granular sludge[J]. China Environmental Science, 2010,30(2):180-185.
[3]
杨麒.好氧颗粒污泥快速培养及其去除生物营养物特性的研究[D]. 长沙:湖南大学, 2008. Yang Q. Study on rapid culture of aerobic granular sludge and bionutrient removal characteristics[D]. Changsha:Hunan University, 2008.
[4]
Kong Y, Liu Y Q, Tay J H, et al. Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios[J]. Enzyme & Microbial Technology, 2009,45(5):379-383.
[5]
高景峰,郭建秋,陈冉妮,等.SBR反应器排水高度与直径比对污泥好氧颗粒化的影响[J]. 中国环境科学, 2008,28(6):512-516. Gao J F, Guo J Q, Chen R N, et al. Influence of SBR drainage height and diameter ratio on aerobic sludge granulation[J]. China Environmental Science, 2008,28(6):512-516.
[6]
Beun J J, van Loosdrecht M C M, Heijnen J J. Aer-obic granulation in a sequencing batch airlift reactor[J]. Water Research, 2002,36:702-712.
[7]
Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33:2283-2290.
[8]
李志华,吴军,贺春博,等.水力旋流条件对好氧颗粒污泥稳定性影响[J]. 环境科学学报, 2013,33(3):671-675. Li Z H, Wu J, He C B, et al. Effect of hydrocyclone on stability of aerobic granule sludge[J]. Acta Scientiae Circumstantiae, 2013, 33(3):671-675.
[9]
Bhunia P, Ghangrekar M M. Comments on enhanced granulation by natural ionic polymer additives in UASB reactor treating low strength wastewater, a full paper published in Water Research 39(16):3801-3810,2005 by Manoj K. Tiwari, Saumyen Guha, C. S. Harendranath, and Shweta Tripathi[J]. Water Research, 2006,40(7):1505-1506.
[10]
Awang N A, Shaaban M G. Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment[J]. International Biodeterioration & Biodegradation, 2016, 112:1-11.
[11]
吴昌永,周岳溪.厌氧/好氧运行方式对颗粒污泥形成的影响[J]. 中国环境科学, 2013,33(7):1237-1243. Wu C Y, Zhou Y X. Effect of anaerobic/aerobic alternative operating strategy on the formation of granular sludge in a sequencing batch Re-actor[J]. China Environmental Science, 2013,33(7):1237-1243.
[12]
杨延栋.不同运行方式下好氧颗粒污泥处理生活污水[D]. 哈尔滨:哈尔滨工业大学, 2013. Yang Y D. Using aerobic granule sludge to treat domestic sewage with different operate patterns[D]. Haerbin:Harbin Institute of Technology, 2013.
[13]
国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2002:100-124. State Environmental Protection Administration. Monitoring and analysis methods of water and wastewater[M]. Beijing:China Environmental Science Press, 2002:100-124.
[14]
Guoping S, Hanqing Y, Xiaoyan L. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:A review[J]. Biotechnol Advances, 2010,28(6):882-894.
[15]
徐晓飞,陈健.多糖含量测定的研究进展[J]. 食品科学, 2009, 30(21):443-448. Xu X F, Chen J. Research progress in methods for quantitative deter -mination of polysaccharides[J]. Food Science, 2009,30(21):443-448.
[16]
王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009,23(3):40-41. Wang X P, Xing S L. Determination of protein quantitation using the method of coomassie brilliant blue[J]. Tianjin Chemical Industry, 2009,23(3):40-41.
[17]
Zheng X, Sun P, Lou J, et al. Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability[J]. Bioresource Technology, 2013,148(11):343-351.
[18]
Yu S, Sun P, Zheng W, et al. The effect of COD loading on the granule -based enhanced biological phosphorus removal granular sludge system and the recoverability[J]. Bioresource Technology, 2014,171:80-87.
[19]
范丹,李冬,梁瑜海,等.生活污水SNAD颗粒污泥快速启动及脱氮性能研究[J]. 中国环境科学, 2016,36(11):3321-3328. Fan D, Li D, Liang Y H, et al. Fast startup and nitrogen removal performance of SNAD granular sludge for treating domestic sewage.[J]. China Environmental Science, 2016,36(11):3321-3328.
[20]
Fang J, Su B, Sun P, et al. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system[J]. Chemosphere, 2015,121:76-83.
[21]
Dierdonck J V, Broeck R V, Vansant A, et al. Microscopic Image Analysis versus Sludge Volume Index to Monitor Activated Sludge Bioflocculation:A Case Study[J]. Separation Science & Technology, 2013,48(10):1433-1441.
[22]
Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology & Biotechnology, 2004,65(2):143-148.
[23]
田志娟.胞外多聚物对好氧颗粒污泥形成与结构稳定化的影响研究[D]. 杭州:浙江大学, 2010. Tian Z J. Study on the effect of extracellular polymeric substances on the formation and stabilization of aerobic granular sludge[D]. Hangzhou:Zhejiang University, 2010.
[24]
王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能影响研究[J]. 中国安全科学学报, 2003,13(9):31-34. Wang H W, Li X Y, Zhao Q X, et al. Effect of extra-cellular polymeric substances (EPS) on bio-flocculation and settlement of activated sludge[J]. China Safety Science Journal, 2003,13(9):31-34.
[25]
李冬,吴青,梁瑜海,等.不同基质条件对亚硝化污泥胞外聚合物的影响[J]. 哈尔滨工业大学学报, 2015,47(4):81-86. Li D, Wu Q, Liang Y H, et al. Effect of substrate concentration and type on the content of extracellular polymeric substances in the nitrification sludge[J]. Journal of Harbin Institute of Technology, 2015,47(4):81-86.
[26]
涂响,苏本生,孔云华,等.城市污水培养好氧颗粒污泥的中试研究[J]. 环境科学, 2010,31(9):2118-2123. Tu X, Su B S, Kong Y H, et al. Cultivation of aerobic granules in a large pilot SBR with domestic sewage[J]. Environmental Science, 2010,31(9):2118-2123.
[27]
Wu C, Peng Y, Wang S, et al. Enhanced biological phosphorus removal by granular sludge:from macro-tomicro-scale[J]. Water Research, 2010,44(3):807-814.
[28]
陈芳媛,宁平.平均粒径对好氧颗粒污泥脱氨效果的影响[J]. 土木建筑与环境工程, 2012,(s1):215-218. Chen F Y, Ning P. Influence of mean size on ammonia removal of aerobic granules[J]. Journal of Civil, Architectural and Environme-ntal Engineering, 2012,(s1):215-218.
[29]
Chen F Y, Liu Y Q, Tay J H, et al. Operational strategies for nitrogen removal in granular sequencing batch reactor[J]. Journal of Hazardous Materials, 2011,189(1):342-348.
[30]
马世豪,何星海.《城镇污水处理厂污染物排放标准》浅释[J]. 给水排水, 2003,29(9):89-94. Ma S H, He X H. Brief explanation of [J]. Water and Wastewater Engineering, 2003,29(9):89-94.
[31]
Kishida N, Kim J, Tsuneda S, et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms[J]. Water Research, 2006,40(12):2303-2310.
[32]
Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules[J]. Letters in Applied Microbiology, 2002,34(4):254-257.
[33]
Kreuk M K D, Picioreanu C, Hosseini M, et al. Kinetic model of a granular sludge SBR:influen-ces on nutrient removal[J]. Biotechnology & Bioengineering, 2007,97(4):801-815.
[34]
Kreuk M K D, Heijnen J J, Loosdrecht M C V. Simultaneous COD,nitrogen, and phosphate removal by aerobic granular sludge[J]. Biotechnology & Bioengineering, 2005,90(6):761-769.
[35]
Yilmaz G, Lemaire R, Keller J, et al. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge[J]. Biotechnology & Bioengineering, 2008,100(3):529-541.
[36]
Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge[J]. Water Research, 2005,39(19):4817-4823.