1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;
3. The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao 066001, China
To study the influences of the different layouts of artificial island on the hydrodynamic and water exchange in the Jinmeng Bay, based on MIKE software, a three and a two-dimensional hydrodynamic and conservative substance transport model were established, and Euler method was used to calculate the residence time. The influence mechanism of artificial island on water exchange was analysed from the entire region and several sub-regions. It reveals that:Conch Island played the roles of guiding and diversion flow, which improves the water exchange capacity of the Jinmeng Bay, i.e., water exchange rate increased by 10.17%. The combined Conch island and connection road make the Jinmeng Bay form a semi-enclosed water area with a poor water exchange capacity, i.e., water exchange rate decreased by 7.73%. The retention of tidal channel in the construction of artificial island is conducive to the water exchange in the region, and the removal of the connection road adds a tidal channel to the near shore of the Tanghe river and the Jinmeng Bay, the water exchange capacity increased by 17.90%. In weak tidal areas, the effect of residual flow should be considered. The residual current and tidal current in the Jinmeng Bay are very weak, the conservative substance can be kept for a long time. Hence, the water exchange is weak and the self-purification capacity is low.
匡翠萍,谢华浪,苏平,等.基于FBM法追踪秦皇岛海域赤潮迁移扩散[J]. 中国环境科学, 2016,36(8):2505-2515. Kuang C P, Xie H L, Su P, et al. Tracking migration and diffusion of red tides in Qinhuangdao coastal water based on FBM method[J]. China Environmental Science, 2016,36(8):2505-2515.
[2]
许歆.秦皇岛近海浮游植物群落结构变化及其组学研究[D]. 北京:中国科学院大学, 2017. Xu X. A study on the changes and omics of phytoplankton community in the Qinhuangdao coastal waters[D]. Beijing:University of Chinese Academy of Sciences, 2017.
[3]
郭磊,杨树森.江苏如东人工岛工程对周边海域水动力的影响[J]. 水道港口, 2009,(30):342-346. Guo L, Yang S S. Influence of artificial island construction on hydrodynamics in waters around Rudong[J]. Journal of Waterway and Harbor, 2009,(30):342-346.
[4]
龚文平,李昌宇,林国尧,等. DELFT3D在离岸人工岛建设中的应用-以海南岛万宁日月湾人工岛为例[J]. 海洋工程, 2012,(30):35-44. Gong W P, Li C Y, Lin G Y, et al. Application of DELFT 3D model for plan design of an artificial island-A case study for the artificial island construction in the Riyue bay, Wanning city, Hainan Island[J]. The Ocean Engineering, 2012,(30):35-44.
[5]
崔成,张义丰,左书华,等.人工岛内湖水体交换数值模拟研究[J]. 水道港口, 2015,(12):515-523. Cui C, Zhang Y F, Zuo S H. Numerical simulation study on water exchange between inner lake of artificial island and sea[J]. Journal of Waterway and Harbor, 2015,(12):515-523.
[6]
朱宇新,李欣.离岸人工岛内水环境的影响研究[J]. 港口技术, 2016,(4):1-5. Zhu Y X, Li X. Effect of water environment of offshore artificial island[J]. Port Engineering Technology, 2016,(4):1-5.
[7]
Bolin B, Rodhe H. A note on the concept of age distribution and transit time in natural reservoirs[J]. Tellus, 1973,(1):58-62.
[8]
Prandle D. A Modelling study of the mixing of 137Cs in the seas of European continental shelf[J]. Philosophical Transactions of the Royal Society of London, 1984,(1513):407-436.
[9]
Zimmerman JTF. Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea Part I:Distribution of salinity and calculation of mixing time scales[J]. Netherlands Journal of Sea Research, 1976,(2):149-191.
[10]
Luff R, Pohlman T. Calculation of water exchange times in the ICES-boxes with a culcrian dispersion model using a half-life time approach[J]. Ocean Dynamics, 1995,(4):287-299.
[11]
Takeoka H. Fundamental concepts of exchange and transport time scales in coastal sea[J]. Continental Shelf Research, 1984,(3):311-326.
[12]
李小宝,袁德奎,陶建华,等.大型海湾水交换计算中随机游动方法的应用研究[J]. 应用数学和力学, 2011,32(5):587-598. Li X B, Yuan D K, Tao J H. Study on application of random walk method to water exchange in large-sacle bay[J]. Applied Mathematics and Mechanics, 2011,32(5):587-598.
[13]
何磊.海湾水交换数值模拟方法研究[D]. 天津:天津大学, 2004. He L. The numercal method study of water exchange for sea bay[D]. Tianjin:Tianjin University, 2004.
[14]
孙健.海湾、近岸海域水交换研究的关联矩阵方法及应用[D]. 天津:天津大学, 2007. Sun J. The relation matrix method and its application of water exchange study for sea bay and coastal water[D]. Tianjin:Tianjin University, 2007.
[15]
吕迎雪.海湾水交换数值模拟方法的研究及其应用[D]. 天津:天津大学, 2009. Lv Y X. Numerical method on water exchange and its application[D]. Tianjin:Tianjin University, 2009.
[16]
王乃瑞.环抱式港湾水体交换能力研究[C]//第十八届中国海洋(岸)工程学术讨论会论文集, 2017,(9):1426-1428. Wang N R. Study on water exchange capacity of enclosing harbour[C]//Papers Collection of the Eighteenth China Ocean (Coastal) Engineering Symposium, 2017,(9):1426-1428.
[17]
张玮,王国超,刘燃,等.环抱式港池水体交换与改善措施研究[J]. 水运工程, 2013,(4):37-41. Zhang W. Wang G C, Liu R, et al. Water exchange and improvement measures for encircled basin[J]. Port & Waterway Engineering, 2013,(4):37-41.
[18]
刘嘉星.渤海湾围海造地对水动力、水交换影响的数值模拟研究[D]. 天津:天津大学, 2016. Liu J X. Numerical study on hydrodynamic and water exchange features caused by reclamation project around the Bohai bay[D]. Tianjin:Tianjin University, 2016.
[19]
赵桂侠.人工岛布置方式对周围海域水动力及水交换影响研究[J]. 水力发电学报, 2017,(2):18-28. Zhao G X. Effect of artificial island layout on hydrodynamics and water exchange in the coastal waters[J]. Journal of Hydroelectric Engineering, 2017,(2):18-28.
[20]
DHI. MIKE 21& MIKE 3FLOW MODEL Hydrodynamic and Transport Module Science Documentation[M]. Denmark:DHI Water &Environment, 2013.
[21]
黄少彬,李开明,姜国强,等.基于MIKE3模型的珠江口水体交换研究[J]. 环境科学与管理, 2013,(38):134-140. Huang S B, Li K M, Jiang G Q, et al. Research on water exchange in pearl river estuary based on MIKE3 Model[J]. Environmental Science and Management, 2013,(38):134-140.
[22]
匡翠萍,冒小丹,顾杰,等.海域水动力对老虎石海滩养护响应关系分析[J]. 同济大学学报, 2014,42(5):689-695. Kuang C P, Mao X D, Gu J, et al. Analysis of hydrodynamic response to beach nourishment at Tiger-Rock beach[J]. Journal of Tongji University, 2014,42(5):689-695.
[23]
冯佳炜,顾杰,匡翠萍,等.秦皇岛海域夏季温排水对流扩散特征[J]. 水动力研究与进展, 2018,(33):490-499. Feng J W, Gu J, Kuang C P, et al. Advection and diffusion characteristics of a summer thermal discharge in Qinhuangdao coastal water[J]. Chinese Journal of Hydrodynamics, 2018,(33):490-499.
[24]
匡翠萍,李正尧,顾杰,等.洋河-戴河河口海域COD时空分布特征研究[J]. 中国环境科学, 2015,35(12):3689-3697. Kuang C P, Li Z Y, Gu J, et al. Study on spatial and temporal characteristics of the COD in estuarine and coastal waters of the Yanghe River and the Daihe River[J]. China Environmental Science, 2015,35(12):3689-3697.
[25]
蒋昌波,李媛,官志鑫,等.铁山湾建港前后水体交换能力的数值模拟[J]. 热带海洋学报, 2013,32(1):81-86. Jiang C B, Li Y, Guan Z X, et al. Numerical simulation of water exchange capability before and after port construction in Tieshan bay[J]. Journal of Tropical Oceanography, 2013,32(1):81-86.
[26]
顾杰,胡成飞,李正尧,等.秦皇岛河流-海岸水动力和水质耦合模拟分析[J]. 海洋科学, 2017,(41):1-11. Gu J, Hu C F, Li Z Y, et al. Coupling simulation and analysis of hydrodynamics and water quality in Qinhuangdao rivers and coastal waters[J]. Marine Sciences, 2017,(41):1-11.
[27]
Willmott C J. On the validation of models[J]. Physical Geography, 1981,(2):184-194.
[28]
匡翠萍,胡成飞,冒小丹,等.秦皇岛海域洪季水动力及污染物扩散数值模拟[J]. 同济大学学报, 2015,(43):1355-1366. Kuang C P, Hu C F Mao X D, et al. Numerical simulation of hydrodynamics and pollution transport in Qinhuangdao coastal water in the flood season[J]. Journal of Tongji University, 2015,(43):1355-1366.
[29]
顾杰,胡成飞,冒小丹,等.洋河水库泄洪对近岸海域水质的影响[J]. 海洋环境科学, 2017,(36):441-448. Gu J, Hu C F, Mao X D, et al. Influences of the Yanghe reservoir flood discharges on water quality in coastal waters[J]. Marine Environmental Science, 2017,(36):441-448.
[30]
陆敏.人工岛对海湾水环境影响的数值研究[D]. 大连:大连理工大学, 2011. Lu M. Numerical study of the impact of water environment by artificial island in the gulf[D]. Dalian:Dalian University of Technology, 2011.
[31]
陈昊.普兰店湾海洋环境容量分析与研究[D]. 大连:大连海洋大学, 2015. Chen H. The analysis and research of the marine environmental capacity of Pulandian bay[D]. Dalian:Dalian Ocean Univesity, 2015.
[32]
Signell R P, Butman B. Modeling tidal exchange and dispersion in Boston Harbor[J]. Journal of Geophysical Researcher, 1992,97(C10):287-299.
[33]
Sun J, Lin B L, Li K M, et al. A modelling study of residence time and exposure time in the Pearl River Estuary, China[J]. Journal of Hydro-environment Research, 2014,(8):281-291.
[34]
徐鹏.象山港潮及其余流的数值研究[D]. 青岛:中国海洋大学, 2013. Xu P. A model study of tide and its redidual current in Xiangshan bay, East China Sea[D]. Qingdao:Ocean Univesity of China, 2013.
[35]
张学庆.胶州湾三维环境动力学数值模拟及环境容量研究[D]. 青岛:中国海洋大学, 2003. Zhang X Q. Study on three-dimensional environment dynamic numerical model and environmental capaeity in Jiaozhou bay[D]. Qingdao:Ocean Univesity of China, 2003.
[36]
Feng S Z, Cheng Ralph T, Xi P G. On tide-induced Lagrangian residual current and residual transport[J]. Water Resources Research, 1986,22(12):1623-1646.
[37]
李国胜,王海龙,李柏良.渤海风驱-潮致拉格朗日余流的数值模拟与季相时空变异[J]. 地理研究, 2005,24(3):359-370. Li G S, Wang H L, Li B L. Numerical simulation on the wind-driven and tide-induced Lagrangian residual circulation and its seasonal spatial-temporal variations in the Bohai Sea[J]. Geographical Research, 2005,24(3):359-370.
[38]
王勇智,吴頔,石洪华,等.近十年来渤海湾围填海工程对渤海湾水交换的影响[J]. 海洋与湖沼, 2015,(46):471-480. Wang Z Y, Wu D, Shi H H, et al. Impact of reclamation on water exchange in Bohai bay in recent decade[J]. Oceanologia Et Limnologia Sinica, 2015,(46):471-480.
[39]
全祺.拉格朗日余流理论在模型海湾及象山港的应用[D]. 山东:中国海洋大学, 2014. Quan Q. Application of the Lagrangian residual current theory to a model bay and the Xiangshan bay[D]. Shandong:Ocean Univesity of China, 2014.
[40]
袁德奎,李广,王道生,等.围填海工程对渤海湾水交换能力影响的数值模拟[J]. 天津大学学报, 2015,(48):605-613. Yuan D K, Li G, Wang D S, et al. Numerical simulation of effects of land reclamation on water exchange capability of Bohai bay[J]. Journal of Tianjin University (Science and Technology), 2015, (48):605-613.
[41]
Andrea C, Georg U. Eulerian and lagrangian transport time scales of a tidal active coastal basin[J]. Journal of Ecological Modelling, 2009, (220):913-922.