Spatial distribution characteristics and ecological risks of vanadium in sediments from Jianhu Lake, Northwest Yunnan Province, China
LI Bo1,2, YU Qing-guo1,2, WEI Feng3, ZHANG Yin-feng1,2, ZHANG Qi4, WANG Sheng-long1,2, LI Li-ping1,2
1. College of Wetlands, Southwest Forestry University, Kunming 650224, China;
2. National Plateau Wetlands Research Center, Kunming 650224, China;
3. College of Ecology and Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China;
4. College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
The inductively coupled plasma-optical emission spectrometer (ICP-OES) was used to determine the concentrations of vanadium in surface and columnar sediments from Jianhu Lake. The modified BCR sequential extraction method was used to extract the different fractions of vanadium, and then the characteristics of spatial distribution and ecological risks of vanadium were assessed, the effects of sediment particle size on the concentrations of vanadium and its fractions were also studied. The results showed that the sediment particles in surface and columnar sediments in Jianhu Lake were mainly composed of silt and fine sand, and the concentrations of vanadium in fine particles were higher. The concentration of vanadium in surface sediments from Jianhu Lake was (117.82±63.31)mg/kg, and its horizontal distribution varied substantially. The concentrations of vanadium in exchangeable, reducible, oxidizable, and residual fraction were (8.91±8.91), (18.36±10.53), (7.67±7.67), (80.22±58.71) mg/kg, respectively. This indicated that vanadium mainly presented in the form of residual fraction. Furthermore, the clay and silt in sediments had a great influence on the reducible and residual fractions of vanadium. The vertical distribution of vanadium also varied greatly, and the concentration of vanadium in bottom sediments was higher than that in surface layer. In addition, the concentrations of vanadium were affected by clay and silt in some areas of Jianhu Lake. The degree of vanadium pollution was mild in sediments from Jianhu Lake, and the potential ecological risks of vanadium were low in most areas. The contamination levels and the potential ecological risks of vanadium in the bottom sediments were higher than those in surface layer.
李波, 喻庆国, 危锋, 张银烽, 张奇, 王胜龙, 李丽萍. 滇西北剑湖沉积物钒空间分布特征和生态风险[J]. 中国环境科学, 2019, 39(5): 2219-2229.
LI Bo, YU Qing-guo, WEI Feng, ZHANG Yin-feng, ZHANG Qi, WANG Sheng-long, LI Li-ping. Spatial distribution characteristics and ecological risks of vanadium in sediments from Jianhu Lake, Northwest Yunnan Province, China. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(5): 2219-2229.
张清海,林昌虎,谭红,等.草海典型高原湿地表层沉积物重金属的积累、分布与污染评价[J]. 环境科学, 2013,34(3):1055-1061. Zhang Q, Lin C, Tan H, et al. Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai Plateau Wetland, Guizhou Province[J]. Environmental Science, 2013,34(3):1055-1061.
[2]
Shiji M, Kavya P, Harikumar P S P. Sediment quality assessment of Kavvayi Wetland in South Coast India with special reference to phosphate fractionation and heavy metal contamination[J]. Journal of Environmental Protection, 2015,6:1308-1321.
[3]
蔡艳洁,张恩楼,刘恩峰,等.云南阳宗海沉积物重金属污染时空特征及潜在生态风险[J]. 湖泊科学, 2017,29(5):1121-1133. Cai Y, Zhang E, Liu E, et al. Spatio-temporal characteristics of heavy metal pollution and potential ecological risk in the sediments of Lake Yangzonghai, Yunnan Province[J]. Journal of Lake Sciences, 2017, 29(5):1121-1133.
[4]
于真真,刘恩峰,张恩楼,等.程海沉积物重金属时空变化及人为污染与潜在生态风险[J]. 环境科学, 2017,38(10):4169-4177. Yu Z, Liu E, Zhang E, et al. Spatio-temporal variations, contamination and potential ecological risk of heavy metals in the sediments of Chenghai Lake[J]. Environment Science, 2017,38(10):4169-4177.
[5]
宋以龙,曾艳,杨海全,等.贵州草海沉积物重金属时空分布特征与生态风险评价[J]. 生态学杂志, 2016,35(7):1849-1856. Song Y, Zeng Y, Yang H, et al. Spatiotemporal distribution and potential ecological risk assessment of heavy metals in the sediments of Lake Caohai, Guizhou, China[J]. Chinese Journal of Ecology, 2016, 35(7):1849-1856.
[6]
钟敏.攀枝花地区钒的环境效应[J]. 广州化工, 2012,40(2):24-25. Zhong M. Environmental effects of vanadium in Panzhihua Area[J]. Guangzhou Chemical Industry, 2012,40(2):24-25.
[7]
滕彦国,矫旭东,左锐,等.攀枝花矿区表层土壤中钒的环境地球化学研究[J]. 吉林大学学报(地球科学版), 2007,37(2):278-283. Teng Y, Jiao X, Zuo R, et al. Environmental geochemistry of vanadium in topsoil in Panzhihua Mining Area[J]. Journal of Jilin University (Earth Science Edition), 2007,37(2):278-283.
[8]
World Health Organization (WHO). Vanadium pentoxide and other inorganic vanadium compounds[R]. Concise International Chemical Assessment Document 29. Geneva:World Health Organization, 2001:1-53.
[9]
Crans D C, Smee J J, Gaidamauskas E, et al. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds[J]. Chemical Reviews, 2004,104(2):849-902.
[10]
王蕾,滕彦国,王金生,等.攀枝花尾矿库溪流中钒的分布及化学形态[J]. 环境化学, 2009,28(3):445-448. Wang L, Teng Y, Wang J, et al. Distribution and chemical speciation of vanadium in downstream of Panzhihua tailingdam[J]. Environmental Chemistriy, 2009,28(3):445-448.
[11]
王云,魏复盛.土壤环境元素化学[M]. 北京:中国环境科学出版社, 1995:231-241. Wang Y, Wei F. Soil environmental element chemistry[M]. Beijing:China Environmental Science Press, 1995:231-241.
[12]
Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000,403:853-858.
[13]
张燕妮,张志明,耿宇鹏,等.滇西北地区优先保护的植物群落类型[J]. 生物多样性, 2013,21(3):296-305. Zhang Y, Zhang Z, Geng Y, et al. Priority plant communities for conservation in Northwest Yunnan[J]. Biodiversity Science, 2013,21(3):296-305.
[14]
李宁云,陈玉惠,胡金明,等.滇西北剑湖湿地海菜花(Ottelia acuminate)群落物种组成及种群分布格局[J]. 湖泊科学, 2017, 29(3):687-695. Li N, Chen Y, Hu J, et al. Species composition and distribution patterns of Ottelia acuminata community in Lake Jianhu, northwestern Yunnan[J]. Journal of Lake Sciences, 2017,29(3):687-695.
[15]
张奇,喻庆国,王胜龙,等.滇西北剑湖沉积物磷形态、空间分布及释放贡献[J]. 环境科学学报, 2017,37(10):3792-3803. Zhang Q, Yu Q, Wang S, et al. Phosphorus fractions, spatial distribution and release contributions in sediments of Jianhu Lake, Northwestern Yunnan Plateau, China[J]. Acta Scientiae Circumstantiae, 2017,37(10):3792-3803.
[16]
郭玉静,郑毅,王妍,等.滇西北高原湖泊剑湖演变过程及其生态环境效应分析[J]. 环境工程, 2017,35(4):45-50. Guo Y, Zheng Y, Wang Y, et al. Evolution of Jianhu Lake and its eco-environmental effects in the northwestern Yunnan province[J]. Environmental Engineering, 2017,35(4):45-50.
[17]
符文超,田昆,肖德荣,等.滇西北高原入湖河口退化湿地生态修复效益分析[J]. 生态学报, 2014,34(9):2187-2194. Fu W, Tian K, Xiao D, et al. The ecological restoration effort of degraded estuarine wetland in Northwest Yunnan Plateau, China[J]. Acta Ecologica Sinica, 2014,34(9):2187-2194.
[18]
Wu Z X. Study on vanadium solution dissolved sediment in wastewater from vanadium precipitation[J]. Advanced Materials Research, 2012,581-582:172-175.
[19]
夏新.土壤和沉积物中有机物和重金属监测新方法[M]. 北京:中国环境科学出版社, 2011:167-177. Xia X. New methods for monitoring organic matter and heavy metals in soils and sediments[M]. Beijing:China Environmental Science Press, 2011:167-177.
[20]
Rauret G, López-sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring Jem, 1999,1(1):57-61.
[21]
郭威,殷淑华,徐建新,等.三峡库区(重庆-宜昌段)沉积物中钒的污染特征及生态风险评价[J]. 环境科学, 2016,37(9):3333-3339. Guo W, Yin S, Xu J, et al. Pollution characteristics and ecological risk assessment of vanadium in sediments of the Three Gorges Reservoir (Chongqing-Yichang Section)[J]. Environment Science, 2016,37(9):3333-3339.
[22]
吕文哲,易亮,付腾飞,等.西南印度洋中脊沉积物粒度特征及不同前处理方法对粒度特征的影响[J]. 海洋科学进展, 2017,35(4):512-523. Lü W, Yi L, Fu T, et al. Grain-size characteristics and environmental significance of abyssal sediments from the southwest Indian Ridge[J]. Advances In Marine Science, 2017,35(4):512-523.
[23]
Bárcena J F, Claramunt I, Garcíaalba J, et al. A method to assess the evolution and recovery of heavy metal pollution in estuarine sediments:Past history, present situation and future perspectives[J]. Marine Pollution Bulletin, 2017,124(1):421-434.
[24]
中国环境监测总站.中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:372-377. China National Environmental Monitoring Center. Background values of soil elements in China[M]. Beijing:China Environmental Science Press, 1990:372-377.
[25]
Harikrishnan N, Ravisankar R, Chandrasekaran A, et al. Assessment of heavy metal contamination in marine sediments of east coast of Tamil Nadu affected by different pollution sources[J]. Marine Pollution Bulletin, 2017,121(1/2):418-424.
[26]
Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980,14(8):975-1001.
[27]
侯千,马建华,王晓云,等.开封市幼儿园土壤重金属生物活性及潜在生态风险[J]. 环境科学, 2011,32(6):1764-1771. Hou Q, Ma J, Wang X, et al. Bioavailability and potential ecological risk of soil heavy metals in kindergartens, Kaifeng City[J]. Environment Science, 2011,32(6):1764-1771.
[28]
徐争启,倪师军,庹先国.等.潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008,31(2):112-115. Xu Z, Ni S, Tuo X, et al. Calculation of heavy metals'toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008,31(2):112-115.
[29]
李天杰,赵烨,张科利,等.土壤地理学[M]. 北京:高等教育出版社, 2004:36-37. Li T, Zhao Y, Zhang K, et al. Soil geography[M]. Beijing:Higher Education Press, 2004:36-37.
[30]
喻庆国,董跃宇,杨宇明,等.滇西北高原湖泊剑湖时空演变规律及驱动机制[J]. 中南林业科技大学学报, 2014,34(10):76-83. Yu Q, Dong Y, Yang Y, et al. Spatial-temporal evolutions and driving mechanisms of Alpine Wetland Jianhu Lake in Northwest Yunnan, China[J]. Journal of Central South University of Forestry & Technology, 2014,34(10):76-83.
[31]
陈荣彦,宋学良,张世涛,等.滇池700年来气候变化与人类活动的湖泊环境响应研究[J]. 盐湖研究, 2008,16(2):7-12. Chen R, Song X, Zhang S, et al. Dianchi Lake sediment records of climate changes and humane activities in the past 700 years[J]. Journal of Salt Lake Research, 2008,16(2):7-12.
[32]
范成新.湖泊沉积物界面过程与效应[M]. 北京:科学出版社, 2013:238-239. Fan C. Interfacial processes and effects of lake sediments[M]. Beijing:Science Press, 2013:238-239.
[33]
毛志刚,谷孝鸿,陆小明,等.太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环境科学, 2014,35(1):186-193. Mao Z, Gu X, Lu X, et al. Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of Lake Taihu[J]. Environment Science, 2014,35(1):186-193.
[34]
李勇.重金属的生态地球化学与人群健康研究[M]. 广州:中山大学出版社, 2014:18-24,71-73. Li Y. Ecological geochemistry and population health research of heavy metals[M]. Guangzhou:Zhongshan University Press, 2014:18-24, 71-73.
[35]
Silva L F O, Oliveira M L S, Sampaio C H, et al. Vanadium and Nickel Speciation in Pulverized Coal and Petroleum Coke Co-combustion[J]. Energy & Fuels, 2013,27(3):1194-1203.
[36]
张智慧,李宝,梁仁君.南四湖南阳湖区河口与湖心沉积物重金属形态对比研究[J]. 环境科学学报, 2015,35(5):1408-1416. Zhang Z, Li B, Liang R. Comparison of sediment heavy metal fractions at estuary and center of Nanyang Zone from Nansi Lake, China[J]. Acta Scientiae Circumstantiae, 2015,35(5):1408-1416.
[37]
Guven D E, Akinci G. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Iner Bay[J]. Journal of Environmental Sciences, 2013,25(9):221-229.
[38]
吴俊锋,谢飞,陈丽娜,等.太湖重污染湖区底泥沉积物特性[J]. 水资源保护, 2011,27(4):74-78. Wu J, Xie F, Chen L, et al. Characteristics of bottom sediment in heavily polluted area of Taihu Lake[J]. Water Resources Protection, 2011,27(4):74-78.
[39]
王鸣宇,张雷,秦延文,等.湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J]. 环境科学学报, 2011,31(11):2447-2458. Wang M, Zhang L, Qin Y, et al. Speciation of heavy metals in sediments from Xiang River and analysis of their environmental factors[J]. Acta Scientiae Circumstantiae, 2011,31(11):2447-2458.
[40]
Vu C T, Lin C, Shern C C, et al. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan[J]. Ecological Indicators, 2017,82:32-42.
[41]
刘存芳.城市有机垃圾厌氧消化pH控制动力学研究[D]. 长沙:湖南大学, 2006. Liu C. Study on pH control kinetics of anaerobic digestion of urban organic waste[D]. Changsha:Hunan University, 2006.
[42]
Idriss A A, Ahmad. Heavy metals nickel and chromiumin sediments in the Juru River, Penang, Malaysia[J]. Journal of Environmental Protection, 2013,4:1245-1250.
[43]
林承奇,胡恭任,于瑞莲,等.九龙江表层沉积物重金属赋存形态及生态风险[J]. 环境科学, 2017,38(3):1002-1009. Lin C, Hu G, Yu R, et al. Speciation and ecological risk of heavy metals in surface sediments from Jiulong River[J]. Environment Science, 2017,38(3):1002-1009.
[44]
董世魁,赵晨,刘世梁,等.水坝建设影响下澜沧江中游沉积物重金属形态分析及污染指数研究[J]. 环境科学学报, 2016,36(2):466-474. Dong S, Zhao C, Liu S, et al. Speciation and pollution of heavy metals in sediment from middle Lancang-Mekong River influenced by dams[J]. Acta Scientiae Circumstantiae, 2016,36(2):466-474.
[45]
邱敏娴,胡恭任,于瑞莲,等.泉州湾洛阳江河口潮滩表层沉积物中重金属赋存形态分析[J]. 环境化学, 2013,32(2):212-218. Qiu M, Hu G, Yu R, et al. Speciation of heavy metals in the tidal-flat surface sediment from Luoyang River estuary of Quanzhou Bay[J]. Environmental Chemistry, 2013,32(2):212-218.
[46]
许国云,段宗亮,田昆.滇西北高原主要湿地挺水植物净化氮、磷效应研究[J]. 山东林业科技, 2014,44(2):1-6. Xu G, Duan Z, Tian K. A Study on the purification effects of main emergent plants in the Plateau wetland northwestern Yunnan[J]. Shandong Forestry Science and Technology, 2014,44(2):1-6.
[47]
董贯仓,李秀启,师吉华,等.南四湖底栖动物群落结构特征及其与环境因子的关系[J]. 湖泊科学, 2013,25(1):119-130. Dong G, Li X, Shi J, et al. Community characteristics of macrozoobenthos and its relationship to environmental factors in Lake Nansi[J]. Journal of Lake Sciences, 2013,25(1):119-130.
[48]
Hernández-Mendoza H, Ríos-Lugo M J, Romero-Guzmán E.Y, et al. Heavy metals monitoring in sediments from Lerma River in West-Central Mexico[J]. American Journal of Analytical Chemistry, 2018,9:77-87.
[49]
朱耀军,郭菊兰,武高洁,等.湛江高桥红树林沉积物理化性质与金属元素的空间分布[J]. 北京林业大学学报, 2014,36(2):1-9. Zhu Y, Guo J, Wu G, et al. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China[J]. Journal of Beijing Forestry University, 2014,36(2):1-9.
[50]
Shrestha N K, Wang J. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate[J]. Science of the Total Environment, 2018,625:1030-1045.