Abstract:Nitrogen-doped carbon quantum dots (N-CQDs) were formed by one-step hydrothermal synthesis, using citric acid as carbon source and ethylene diamine as modifierin this study. The effects of N-CQDs on the growth of photosynthetic bacteria Rhodopseudomonas acidophila were investigated by analyzing the physiological indexes of photosynthetic pigment, protein and malondialdehyde. The results showed that N-CQDs inhibited the growth of R. acidophila and showed a concentration-effect relationship. Additionally, N-CQDs increased the content of carotenoid in R. acidophila while it decreased the content of bacteriochlorophyll. Furthermore, spectra analysis results showed that N-CQDs led to the leakage of intracellular sbustances such as photosynthetic pigment and protein. The strong light-induced electron transfer ability of N-CQDs resulted in excessive free radicals in the culture system of R. acidophila, which led to a series of lipid peroxidation reactions, which in turn led to the rupture of biofilms, material leakage and bacterial death. N-CQDs had a high toxicity on R. acidophila under light. The results of this study are valuable for understanding the phototoxicity and ecological effects of N-CQDs.
周岳陵, 岳正波, 胡馥鹏, 王进. 掺氮碳量子点对光合细菌生长过程的影响[J]. 中国环境科学, 2019, 39(8): 3396-3403.
ZHOU Yue-ling, YUE Zheng-bo, HU Fu-peng, WANG Jin. Effect of nitrogen-doped carbon quantum dots on the growth of photosynthetic bacteria. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(8): 3396-3403.
闾晓萍,黄绚,杨坤.碳纳米材料的生物毒性效应研究及展望[J]. 环境污染与防治, 2011,33(5):87-94. Lv X P, Huang X, Yang K. Advance and perspectives of the bio-toxicity of carbon nanomaterial[J]. Environmental Pollution Control, 2011,33(5):87-94.
[2]
吕小慧,陈白杨,朱小山.氧化石墨烯的水环境行为及其生物毒性[J]. 中国环境科学, 2016,36(11):3348-3359. Lv X H, Chen B Y, Zhu X H. Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 2016,36(11):3348-3359.
[3]
李佳昕,张娴,张爱清,等.碳纳米材料的水环境行为及对水生生物毒理学研究进展[J]. 生态毒理学报, 2017,12(5):12-25. Li J X, Zhang X, Zhang A Q, et al. A review of aquatic environmental behavior of carbon nanomaterials and its toxicological effects on aquatic organisms[J]. Asian Journal of Ecotoxicology, 2017,12(5):12-25.
[4]
王玉琳,闻韵,王晓慧,等.多壁碳纳米管长期作用对活性污泥系统的影响[J]. 环境科学研究, 2014,27(12):1486-1492. Wang Y L, Wen Y, Wang X H,et al.Long-term effects of multi-walled carbon nanotubes on activated sludge system[J]. Research of Environmental Science, 2014,27(12):1486-1492.
[5]
朱小山,朱琳,田胜艳,等.三种碳纳米材料对水生生物的毒性效应[J]. 中国环境科学, 2008,28(3):269-273. Zhu X S, Zhu L, Tian S Y, et al. Toxicity effect of three kinds of carbon nanomaterials on aquatic organisms[J]. China Environmental Science. 2008,28(3):269-273.
[6]
朱小山,朱琳,郎宇鹏,等.富勒烯及其衍生物对斑马鱼胚胎发育毒性的比较[J]. 中国环境科学, 2008,28(2):173-177. Zhu X S, Zhu L, Lang Y P,et al. Developmental toxicity in zebrafish embryos after exposure to three fullerene aggregates (nC60) and fullerol[J]. China Environmental Science, 2008,28(2):173-177.
[7]
Arul V, Edison T N J I, Lee Y R,et al. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus[J]. Journal of Photochemistry and Photobiology B:Biology, 2017,168:142-148.
[8]
Biswas A, Khandelwal P, Das R,et al. Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells[J]. Journal of Materials Chemistry B, 2017,5(4):785-796.
[9]
黄淮青,曾萍,韩宝福,等.荧光碳点的合成及对酿酒酵母的毒性研究[J]. 无机化学学报, 2012,28(1):13-19. Huang H Q, Zeng P, Han B F,et al. Preparation of fluorescent carbon dots and its cytotoxicity for Saccharomyce cerevisiae [J]. Chinese Journal of Inorganic Chemistry, 2012,28(1):13-19.
[10]
Bagheri Z, Ehtesabi H, Hallaji Z,et al. Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell[J]. Ecotoxicology and Environmental Safety, 2018,161:245-250.
[11]
刘文娟,靳竞男,马家恒,等.荧光碳点纳米材料对大肠杆菌的毒性研究[J]. 化学与生物工程, 2015,32(9):26-30. Liu W J, Jin J N, Ma J H,et al. Toxic effect of photoluminescent carbon dots nanomaterial on Escherichia Coli[J]. Chemistry & Bioengineering, 2015,32(9):26-30.
[12]
Xiao A, Wang C, Chen J,et al. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2016,133:211-217.
[13]
Kang Y, Li Y, Fang Y,et al. Carbon quantum dots for Zebrafish fluorescence imaging[J]. Scientific Reports, 2015,5(11835):1-12.
[14]
Wang K, Gao Z, Gao G,et al. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Research Letters, 2013,8(122):1-9.
[15]
何春华.光合细菌的分离鉴定和生长条件优化及应用初探[D]. 哈尔滨:哈尔滨工业大学, 2009. He C H. Research on separation, identification, growth conditions of photosynthetic bacteria and application pre-test[D]. Harbin:Harbin Institute of Technology, 2009.
[16]
卓民权,赵春贵,程茜茹,等.紫细菌光合色素指纹图谱的建立与色素分析[J]. 微生物学报, 2012,52(6):760-768. Zhuo M Q, Zhao C G, Cheng X R,et al. Fingerprinting analysis of photopigments in purple bacteria[J]. Acta Microbiologica Sinica, 2012,52(6):760-768.
[17]
欧阳少虎.三种碳纳米材料对小球藻的毒性效应及其机理研究[D]. 天津:南开大学, 2016. OuYang S H. The toxic effects and mechanisms of three carbonaceous nanomaterials on Chlorella vulgaris [D]. Tianjin:Tianjin University, 2016.
[18]
Lamers P P, van de Laak C C W, Kaasenbrood P S,et al. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina[J]. Biotechnology & Bioengineering, 2010,106(4):638-648.
[19]
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae:a multifunctional response to stress[J]. Photosynthesis Research, 2010,106(1/2):155-177.
[20]
李莹.强光胁迫下雨生红球藻积累次生类胡萝卜素过程中的光合作用变化和光保护机制[D]. 武汉:华中师范大学, 2005. Li Y. Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation[D]. Wuhan:Central China Normal University, 2005.
[21]
Gomes M P, Le Manac'H S G, Maccario S,et al. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants[J]. Pesticide Biochemistry and Physiology, 2016,130:65-70.
[22]
Perreault F, Popovic R, Dewez D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba[J]. Environmental Pollution, 2014,185:219-227.
[23]
Li Z, Wakao S, Fischer B B,et al. Sensing and responding to excess light[J]. Annual Review of Plant Biology, 2009,60(1):239-260.
[24]
Han D, Wang J, Sommerfeld M,et al. Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (chlorophyceae) to photooxidative stress[J]. Journal of Phycology, 2012,48(3):693-705.
[25]
程茜茹,赵春贵,卓民权,等.沼泽红假单胞菌光合色素的分离、组成分析与光稳定性[J]. 微生物学通报, 2014,41(1):26-34. Cheng Q R, Zhao C G, Zhuo M Q,et al. Separation, characterization and light stability of photosynthetic pigments from Rhodopseudomonas palustris [J]. Microbiology China, 2014,41(1):26-34.
[26]
殷高方,赵南京,胡丽,等.基于色素特征荧光光谱的浮游植物分类测量方法[J]. 光学学报, 2014,34(9):312-317. Yin G F, Zhao N J, Hu L,et al. Classified measurement of phytoplankton based on characteristic fluorescence of photosynthetic pigments[J]. Acta Opitica Sinica, 2014,34(9):312-317.
[27]
Ledford H K, Niyogi K K. Singlet oxygen and photo-oxidative stress management in plants and algae[J]. Plant Cell and Environment, 2005,28(8):1037-1045.
[28]
姜国飞,李旭飞,吕艳,等.Cu/ZnO-RGO的抗菌性能及应用[J]. 中国环境科学, 2018,38(8):3121-3128. Jiang G F, Li X F, Lv Y,et al. Antibacterial properties and application of Cu/ZnO-RGO nanocomposites[J]. China Environmental Science, 2018,38(8):3121-3128.
[29]
陈绪松,李栋,刘志杰,等.等离子体射流灭活液体中铜绿假单胞菌的研究[J]. 微生物学通报, 2017,44(4):865-871. Chen X S, Li D, Liu Z J,et al. Inactivation of Pseudomonas aeruginosa in suspension using atmospheric pressure plasma jet[J]. Microbiology China, 2017,44(4):865-871.
[30]
Travlou N A, Giannakoudakis D A, Algarra M,et al. S-and N-doped carbon quantum dots:surface chemistry dependent antibacterial activity[J]. Carbon, 2018,135:104-111.
[31]
张倩.氧化石墨烯对4种微藻的致毒效应研究[D]. 青岛:中国海洋大学, 2015. Zhang Q. Toxicity of water dispersible graphene oxide (GO) to four species of algae[D]. Qingdao:Ocean University of China, 2015.
[32]
董微,王莹,宋有涛,等.荧光碳点与CdTe量子点对毕赤酵母的毒性比较[J]. 分析试验室, 2012,31(11):1-4. Dong W, Wang Y, Song Y T,et al. Comparison of cytotoxicity of fluorescent carbon dots and CdTe quantum dots for pichia pastoris[J]. Chinese Journal of Analysis Laboratory, 2012,31(11):1-4.
[33]
Jiang K, Sun S, Zhang L,et al. Red, green, and blue luminescence by carbon dots:full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie-international Edition, 2015,54(18):5360-5363.
[34]
Gong X, Lu W, Paau M C,et al. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging[J]. Analytica Chimica Acta, 2015,861:74-84.
[35]
Wei J, Zhang X, Sheng Y,et al. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper[J]. New Journal of Chemistry, 2014,38(3):906-909.
[36]
Deng J, Lu Q, Mi N,et al. Electrochemical synthesis of carbon nanodots directly from alcohols[J]. Chemistry-A European Journal, 2014,20(17):4993-4999.
[37]
Sahu S, Behera B, Maiti T K,et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70):8835-8837.
[38]
Jaiswal A, Ghosh S S, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol)[J]. Chemical Communications, 2012,48(3):407-409.
[39]
Zhai X, Zhang P, Liu C,et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64):7955-7957.
[40]
Di J, Xia J, Huang Y,et al. Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation[J]. Chemical Engineering Journal, 2016,302:334-343.
[41]
Di J, Xia J, Chen X,et al. Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis[J]. Carbon, 2017,114:601-607.
[42]
Sharma S, Umar A, Mehta S K,et al. Solar light driven photocatalytic degradation of levofloxacin using TiO2/Carbon-dot nanocomposites[J]. Chemical Engineering Journal, 2018,42(9):7445-7456.
[43]
Zhang J, Yan M, Yuan X,et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation[J]. Journal of Colloid and Interface Science, 2018,529:11-22.