The in-situ measurement of atmospheric hydrofluorocarbons (HFCs) at the Shangdianzi Regional Background Station in Beijing
XIE Wen-qi1,2, YAO Bo1,3, QUAN Wei-jun4,5, FANG Shuang-xi3, MA Zhi-qiang4, ZHOU Huai-gang4,5, DONG Fan4,5, ZHOU Li-yan4,5, HE Di4,5, SHI Qing-feng4,5, CHEN Li-qu3
1. College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Nanchang County Meteorological Bureau, Nanchang 330200, China;
3. Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China;
4. Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Beijing 100089, China;
5. Beijing Shangdianzi Regional Atmosphere Watch Station, Beijing 101500, China
A gas chromatograph/mass spectrometer (GC/MS) system was used for in-site measurements of atmospheric hydrofluorocarbons (HFCs) at the Shangdianzi Regional Background Station from January 2018 to December 2018. The background mixing ratios of HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-227ea, HFC-236fa, HFC-245fa, HFC-365mfc and HFC-4310mee were (31.9±0.4)×10-12, (22.1±1.7)×10-12, (29.3±1.3)×10-12, (110.2±2.4)×10-12, (24.0±0.3)×10-12, (10.3±0.7)×10-12, (1.59±0.04)×10-12, (0.19±0.01)×10-12, (3.30±0.08)×10-12, (1.27±0.03)×10-12, (0.28±0.01)×10-12, respectively, while the polluted mixing ratios were (39.2±11.1)×10-12, (47.7±21.8)×10-12, (38.6±8.7)×10-12, (137.3±15.7)×10-12, (26.1±2.2)×10-12, (15.9±7.0)×10-12, (2.77±1.11)×10-12, (0.25±0.06)×10-12, (4.10±0.97)×10-12, (1.34±0.06)×10-12, (0.30±0.01)×10-12. Background conditions occurred for 34.5%, 23.4%, 22.5%, 24.6%, 24.5%, 42.5%, 24.3%, 46.4%, 38.3%, 68.1%, 77.9% of all measurements for the 11HFCs. The background mixing ratios of HFC-32、HFC-125、HFC-134a、HFC-143a、HFC-227ea exhibited a linear increasing trend at 4.4×10-12, 3.8×10-12, 7.3×10-12, 1.0×10-12, 0.14×10-12a-1, while HFC-152a background data showed a strong seasonal variation. A tracer-radio method was applied to estimate the emissions of HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-236fa, HFC-245fa emissions using CO as a tracer. Chinese emissions of the HFCs mentioned above were 6.4,17,14,27,4.0,0.10 and 1.3kt/a in 2018.
谢文琪, 姚波, 权维俊, 方双喜, 马志强, 周怀刚, 董璠, 周礼岩, 何迪, 石庆峰, 陈丽曲. 北京上甸子大气本底站氢氟碳化物在线观测研究[J]. 中国环境科学, 2019, 39(12): 4941-4949.
XIE Wen-qi, YAO Bo, QUAN Wei-jun, FANG Shuang-xi, MA Zhi-qiang, ZHOU Huai-gang, DONG Fan, ZHOU Li-yan, HE Di, SHI Qing-feng, CHEN Li-qu. The in-situ measurement of atmospheric hydrofluorocarbons (HFCs) at the Shangdianzi Regional Background Station in Beijing. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(12): 4941-4949.
Wan D, Xu J, Zhang J, et al. Historical and projected emissions of major halocarbons in China[J]. Atmospheric Environment, 2009, 43(36):5822-5829.
[2]
张仁健,王明星,杨昕,等.中国氢氟碳化物、全氟化碳和六氟化硫排放源初步估算[J]. 气候与环境研究, 2000,5(2):177-179. Zhang R J, Wang M X, Yang X, et al. Preliminary estimation of emission sources of hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride in China[J]. Climate and Environmental Research, 2000, 5(2):177-179.
[3]
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion:2018, Global Ozone Research and Monitoring Project-Report No.58[R]. Geneva:Switzerland, 2018.
[4]
Stocker T F, Qin D, Plattner G K, et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. New York, Cambridge University Press, 2013:1535.
[5]
Velders G J M, Fahey D W, Daniel J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proc Natl Acad Sci, 2009,106(27):10949-10954.
[6]
Fang X K, Velders G J M, Ravishankara A R, et al. Hydrofluorocarbon (HFC) emissions in China:An inventory for 2005−2013 and projections to 2050[J]. Environmental Science & Technology, 2016,50(4):2027-2034.
[7]
Barletta B, Meinardi S, Simpson I, et al. Ambient halocarbon concentrations in 45 Chinese cities[J]. Atmospheric Environment, 2006,40(40):7706-7719.
[8]
Chan C, Tang J, Li Y, et al. Mixing ratios and sources of halocarbons in urban, semi-urban and rural sites of the Pearl River Delta, South China[J]. Atmospheric Environment, 2006,40(38):7331-7345.
[9]
Chan L Y, Chu K W. Halocarbon in the atmosphere of the industrial-related Pearl River Delta region of China[J]. Journal of Geophysical Research, 2007,112(D4):305.
[10]
Fang X K, Wu J, Xu J, et al. Ambient mixing ratios of chlorofluorocarbons hydrochlorofluorocarbons and hydrofluorocarbons in 46 Chinese cities[J]. Atmospheric Environment, 2012,54:387-392.
[11]
Wu J, Fang X, Martin J W, et al. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region[J]. China Science of the Total Environment, 2014,470-471:829-834.
[12]
Zheng P G, Chen T S, Dong C, et al. Characteristics and sources of halogenated hydrocarbons in the Yellow River Delta region, northern China[J]. Atmospheric Research, 2019,225:70-80.
[13]
Zhang G, Yao B, Vollmer M K, et al. Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China[J]. Atmospheric Environment, 2017,160:55-69.
[14]
姚波,李培昌,周凌晞,等.大气氢氟碳化物采样分析和质量控制方法研究[J]. 中国环境科学, 2012,32(9):1597-1601. Yao B, Li P C, Zhou L X, et al. Sampling-analysis-quality control method for atmospheric hydrofluorocarbons (HFCs)[J]. China Environmental Science, 2012,32(9):1597-1601.
[15]
Yao B, Vollmer M K, Zhou L X, et al. In-situ measurements of atmospheric hydroflfluorocarbons (HFCs) and perflfluorocarbons (PFCs) at the Shangdianzi regional background station, China[J]. Atmospheric Chemistry Physics, 2012,12:10181-10193.
[16]
Yao B, Vollmer M K, Xia L G, et al. A study of four-year HCFC-22 and HCFC-142b in-situ measurements at the Shangdianzi regional background station in China[J]. Atmospheric Environment, 2012,63:43-49.
[17]
Lin W, Xu X, Zhang X, et al. Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW station[J]. Atmospheric Chemistry Physics, 2008,8:5889-5898.
[18]
Miller B R, Weiss R F, Salameh P K, et al. Medusa:A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds[J]. Analytical Chemistry, 2008,80(5):1536-1545.
[19]
姚波,周凌晞,李培昌,等.气相色谱质谱联用法在线观测大气中的氢氟碳化物和全氟化碳[J]. 环境化学, 2012,31(9):1405-1411. Yao B, Zhou L X, Li P C, et al. In-situ measurement of atmospheric hydrofluorocarbon and perfluorocabons using GC-MS method[J]. Environmental Chemistry, 2012,31(9):1405-1411.
[20]
Prinn R G, Weiss R F, Arduini J, et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)[J]. Earth System Science Data, 2018,10:985-1018.
[21]
Li S, Kim J, Kim K R, et al. Emissions of halogenated compounds in East Asia determined from measurements at Jeju Island, Korea[J]. Environmental Science Technology, 2011,45:5668-5675.
[22]
姚波,周凌晞,张芳,等.北京上甸子区域大气本底站四氯化碳(CCl4)在线观测[J]. 环境科学学报, 2010,30(12):2377-2382. Yao B, Zhou L X, Zhang F, et al. In-situ measurement of atmospheric carbon tetrachloride (CCl4) at the Shangdianzi Global Atmosphere Watch regional station[J]. Atca Scientiae Circumstantiae (in Chinese), 2010,30(12):2377-2382.
[23]
Fang X, Wu J, Su S, et al. Estimates of major anthropogenic halocarbon emissions from China based on interspecies correlations[J]. Atmospheric Environment, 2012,62:26-33.
[24]
Yokouchi Y, Taguchi S, Saito T, et al. High frequency measurement of HFCs at a remote site in east Asia and their implications for Chinese emissions[J]. Geophysical Research Letters, 2006,33(21):814.
[25]
中国多尺度排放清单模型MEIC.[EB/OL]. http://www.meicmodel.org/index.html. 2019-06-16. China multi-scale emission inventory model MEIC.[EB/OL]. http://www.meicmodel.org/index.html. 2019-06-16.
[26]
Ruckstuhl A F, Henne S, Reimann S, et al. Extraction of baseline signal of atmospheric trace species using local regression[J]. Atmospheric Measurement Techniques, 2012,5:2613-2624.
[27]
Andreas F R, Matthew P J, Robert W F, et al. Baseline subtraction using robust local regression estimation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001,68(2):179-193.
[28]
胡建信,万丹,李春梅,等.中国汽车空调行业HFC-134a需求和排放预测[J]. 气候变化研究进展, 2009,5(1):1-6. Hu J X, Wan D, Li C Y, et al. China's automotive air conditioning industry HFC-134a demand and emissions forecast[J]. Climate Change Research, 2009,5(1):1-6.
[29]
Fang X K, Ravishankara A R, Velders G J M, et al. Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal Protocol[J]. Environmental Science & Technology, 2018,52(19):11359-11366.
[30]
Liu L S, Dou Y W, Yao B, et al. Historical and projected HFC-410A emission from room air conditioning sector in China[J]. Atmospheric Environment, 2019,212:194-200.