High resolution spatiotemporal distributionand correlation analysis of PM2.5 and PM10 concentrations in the Sichuan Basin
TANG Yu-lei1, YANG Fu-mo1,2, ZHAN Yu1,2
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
2. National Engineering Research Center for Flus Gas Desulfurization, Chengdu 610065, China
In order to advance the understandings of the regional air pollution in the Sichuan Basin, two machine learning based models, random forests (RF), were developed to estimate the daily PM2.5 and PM10 concentrations on the 1km grid from 2013 to 2017. The datasets used for the model training included the satellite-retrieved aerosol optical depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) product, the ground-based observations from the state-managed air quality monitoring network, as well as the meteorological, geographical, and socioeconomic variables. The RF models showed superior performance in predicting PM2.5 and PM10 (R2=0.86 for both). The multiyear regional average PM2.5 and PM10 concentrations were 47.8 and 75.2μg/m3, respectively. The PM2.5 and PM10 levels were predicted to be higher in the western and southern basin than the other areas, exhibiting a shape of crescent. During these five years, the PM2.5 and PM10 concentrations both decreased by 27%. The particulate matter concentrations exhibited obvious seasonality with the highest in winter and the lowest in summer. The spatial distributions of PM2.5 and PM10 showed high correlation (r=0.96), with stronger correlation in the lowland areas and slightly weaker correlation in the surrounding mountainous area. The correlations in spring (r=0.91) and summer (r=0.90) were relatively lower than those in fall (r=0.96) and winter (r=0.96). Ratio of PM2.5 to PM10 was higher in the southwestern basin and showed adescending order of winter > fall > summer > spring.
汤宇磊, 杨复沫, 詹宇. 四川盆地PM2.5与PM10高分辨率时空分布及关联分析[J]. 中国环境科学, 2019, 39(12): 4950-4958.
TANG Yu-lei, YANG Fu-mo, ZHAN Yu. High resolution spatiotemporal distributionand correlation analysis of PM2.5 and PM10 concentrations in the Sichuan Basin. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(12): 4950-4958.
Naghavi M, Wang H, Lozano R, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990~2013:a systematic analysis for the global burden of disease study 2013[J]. Lancet, 2015,385(9963):117-171.
[2]
Miri M, Alahabadi A, Ehrampush M H, et al. Mortality and morbidity due to exposure to ambient particulate matter[J]. Ecotoxicology And Environmental Safety, 2018,165(12):307-313.
[3]
Liu Z, Wang F, Li W, et al. Does utilizing WHO's interim targets further reduce the risk-meta-analysis on ambient particulate matter pollution and mortality of cardiovascular diseases?[J]. Environmental Pollution, 2018,242(11):1299-1307.
[4]
徐建辉,江洪.长江三角洲PM2.5质量浓度遥感估算与时空分布特征[J]. 环境科学, 2015,36(9):3119-3127. Xu J H, Jiang H. Remote sensing estimation and spatiotemporal distribution characteristics of PM2.5 mass concentration in the Yangtze River Delta[J]. Environmental Science, 2015,36(9):3119-3127.
[5]
景悦,孙艳玲,徐昊,等.基于混合效应模型的京津冀地区PM2.5日浓度估算[J]. 中国环境科学, 2018,38(8):2890-2897. Jing Y, Sun Y L, Xu H, et al. Estimation of PM2.5 daily concentration in Beijing-Tianjin-Hebei region based on mixed effect model[J]. China Environmental Science, 2018,38(8):2890-2897.
[6]
熊秋林,赵文吉,宫兆宁,等.北京城区2007~2012年细颗粒物数浓度时空演化[J]. 中国环境科学, 2013,33(12):2123-2130. Xiong Q L, Zhao W J, Gong Z N, et al. Spatiotemporal evolution of fine particle number concentration in Beijing urban area from 2007 to 2012[J]. China Environmental Science, 2013,33(12):2123-2130.
[7]
Ma Z, Hu X, Sayer A M, et al. Satellite-based spatiotemporal trends in PM2.5 concentrations:China, 2004~2013[J]. Environmental Health Perspectives, 2016,124(2):184-192.
[8]
Song W, Jia H, Huang J, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014,154(11):1-7.
[9]
Zhan Y, Luo Y, Deng X, et al. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm[J]. Atmospheric Environment, 2017, 155(4):129-139.
[10]
Huang Q, Cai X, Song Y, et al. Air stagnation in China (1985~2014):climatological mean features and trends[J]. Atmospheric Chemistry and Physics, 2017,17(12):7793-7805.
[11]
Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China:spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J]. Atmospheric Chemistry and Physics, 2012,12(2):779-799.
[12]
中华人民共和国生态环境部.2017年中国生态环境状况公报[EB/OL]. 北京,生态环境部, 2018. http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201805/P020180531534645032372.pdf. Ministry of Ecology and Environment of the People's Republic of China. Bulletin on the State of China's Ecological Environment in 2017[EB/OL]. BeiJing, Ministry of Ecology and Environment, 2018. http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201805/P020180531534645032372.pdf.
[13]
GB3095-2012环境空气质量标准[S]. GB3095-2012 Ambient air quality standards[S].
[14]
陈良富,李莘莘,陶金花,等.气溶胶遥感定量反演研究与应用[M]. 北京:科学出版社, 2011:34-49. Chen L F, Li X X, Tao J H, et al. Quantitative inversion and application of aerosol remote sensing[M]. Beijing:Science Press, 2011:34-49.
[15]
Lyapustin A, Wang Y, Korkin S, et al. MODIS Collection 6MAIAC algorithm[J]. Atmospheric Measurement Techniques, 2018,11(10):5741-5765.
[16]
徐新良.中国GDP空间分布公里网格数据集[DB/OL]. 中国科学院资源环境科学数据中心(http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121102. Xu X L. Spatial distribution of national GDP in 1km grid[DB/OL]. Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121102.
[17]
You W, Zang Z, Zhang L, et al. National-scale estimates of ground-Level PM2.5 concentration in China using geographically weighted regression based on 3km resolution MODIS AOD[J]. Remote Sensing, 2016,8(3):184-197.
[18]
Ho T K. The random subspace method for constructing decision forests[J]. Ieee Transactions on Pattern Analysis And Machine Intelligence, 1998,20(8):832-844.
[19]
Prasad A M, Iverson L R, Liaw A. Newer classification and regression tree techniques:Bagging and random forests for ecological prediction[J]. Ecosystems, 2006,9(2):181-199.
[20]
Svetnik V, Liaw A, Tong C, et al. Random forest:A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(6):1947-1958.
[21]
Diego Rodriguez J, Perez A, Antonio Lozano J. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):569-575.
[22]
庄欣,黄晓锋,陈多宏,等.基于日变化特征的珠江三角洲大气污染空间分布研究[J]. 中国环境科学, 2017,37(6):2001-2006. Zhuang X, Huang X F, Chen D H, et al. Spatial distribution of air pollution in the Pearl River Delta based on diurnal variation characteristics[J]. China Environmental Science, 2017,37(6):2001-2006.
[23]
Bergmeir C, Hyndman R J, Koo B. A note on the validity of cross-validation for evaluating autoregressive time series prediction[J]. Computational Statistics & Data Analysis, 2018,120(4):70-83.
[24]
Strobl C, Boulesteix A-L, Kneib T, et al. Conditional variable importance for random forests[J]. Bmc Bioinformatics, 2008,9(1):307-315.
[25]
Zhang Z, Zhang X, Gong D, et al. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing[J]. Atmospheric Environment, 2015, 108(5):67-75.
[26]
Di Q, Amini H, Shi L, et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution[J]. Environment International, 2019,130(9):104909.
[27]
贺克斌,杨复沫,段凤魁,等.大气颗粒物与区域复合污染[M]. 北京:科学出版社, 2011:37-39. He K B, Yang F M, Duan F K, et al. Atmospheric particulate matter and regional composite pollution[M]. Beijing:Science Press, 2011:37-39.
[28]
郭晓梅,陈娟,赵天良,等.1961~2010年四川盆地霾气候特征及其影响因子[J]. 气象与环境学报, 2014,30(6):100-107. Guo X M, Chen J, Zhao T L, et al. Climatic characteristics and its influencing factors in the Sichuan Basin from 1961 to 2010[J]. Journal of Meteorology and Environment, 2014,30(6):100-107.
[29]
吕铃钥,李洪远,杨佳楠.植物吸附大气颗粒物的时空变化规律及其影响因素的研究进展[J]. 生态学杂志, 2016,35(2):524-533. Lv L Y, Li H Y, Yang J N. Advances in research on temporal and spatial variation of plant adsorption of atmospheric particulate matter and its influencing factors[J]. Chinese Journal of Ecology, 2016,35(2):524-533.
[30]
曹军骥. PM2.5与环境[M]. 北京:科技出版社, 2014:11-17. Cao J J. PM2.5 and environment[M]. Beijing:Science Press, 2014:11-17.
[31]
廖乾邑,罗彬,杜云松,等.北方沙尘对四川盆地环境空气质量影响和特征分析[J]. 中国环境监测, 2016,32(5):51-55. Liao Q Y, Luo B, Du Y S, et al. Influence of northern dust on environmental air quality in Sichuan Basin and its characteristics[J]. Environmental Monitoring in China, 2016,32(5):51-55.
[32]
Ning G, Wang S, Ma M, et al. Characteristics of air pollution in different zones of Sichuan Basin, China[J]. Science of the Total Environment, 2018,612(1):975-984.
[33]
Tian M, Liu Y, Yang F, et al. Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China[J]. Environmental Pollution, 2019,250(7):898-905.