A coupling model of genetic algorithm and RBF neural network for the prediction of PM2.5 concentration
LIANG Ze1, WANG Yue-yao1, YUE Yuan-wen2, WEI Fei-li1, JIANG Hong3, LI Shuang-cheng1
1. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China;
3. School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
We developed a coupling model combining the radial basis function (RBF) artificial neural network and the genetic algorithm to predict the average PM2.5 concentrations in Beijing in the next 24hours. This model mainly used air pollutant concentration data obtained by air quality monitoring stations as inputs, and relied on the genetic algorithm to determine parameters such as the number of hidden layer neurons and the spread constant. The model had a good prediction performance (R-square up to 0.75) with less data inputs because it does not need meteorological or geographical information for its training process. Further improvements can be made by using multi-source data and increasing sample size in the training process to enhance the accuracy and robustness of the model for the prediction of air pollution in different situations.
梁泽, 王玥瑶, 岳远紊, 韦飞黎, 姜虹, 李双成. 耦合遗传算法与RBF神经网络的PM2.5浓度预测模型[J]. 中国环境科学, 2020, 40(2): 523-529.
LIANG Ze, WANG Yue-yao, YUE Yuan-wen, WEI Fei-li, JIANG Hong, LI Shuang-cheng. A coupling model of genetic algorithm and RBF neural network for the prediction of PM2.5 concentration. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(2): 523-529.
Sinha P R, Gupta P, Kaskaoutis D G, et al. Estimation of particulate matter from satellite- and ground-based observations over Hyderabad, India[J]. International Journal of Remote Sensing, 2015,36(24):6192-6213.
[2]
Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental science & technology, 2005,39(9):3269-3278.
[3]
Song X, Liu Y, Hu Y, et al. Short-term exposure to air pollution and cardiac arrhythmia:a meta-analysis and systematic review[J]. International Journal of Environmental Research and Public Health, 2016,13(7):642.
[4]
郑国威,王腾军,杨友森,等.基于遗传小波神经网络的PM2.5浓度预测模型[J]. 测绘与空间地理信息, 2018,41(9):248-250+256. Zheng G W, Wang T J, Yang Y S, et al. PM2.5 concentration prediction model based on genetic wavelet neural network[J]. Geomatics & Spatial Information Technology, 2018,41(9):248-250+256.
[5]
Nunnari G, Dorling S, Schlink U, et al. Modeling SO2concentration at a point with statistical approaches[J]. Environmental Modeling & Software, 2004,19(10):887-905.
[6]
张双成,赵迎辉,戴凯阳,等.西安地区雾霾与GPS水汽的相关性分析[J]. 工程勘察, 2016,44(3):47-50+60. Zhang S C, Zhao Y H, Dai K Y, et al. Correlation analysis between the dust-haze and GPS water vapor in Xi'an[J]. Geotechnical Investigation & Surveying, 2016,44(3):47-50+60.
[7]
Lu W Z, Wang W J, Wang X K, et al. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong[J]. Environmental Research, 2004,96(1):79-87.
[8]
Bai Y, Li Y, Wang X X, et al. Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions[J]. Atmospheric Pollution Research, 2016,7(3):557-566.
[9]
Biancofiore F, Busilacchio M, Verdecchia M, et al. Recursive neural network model for analysis and forecast of PM10 and PM2.5[J]. Atmospheric Pollution Research, 2017,8(4):652-659.
[10]
Feng X, Li Q, Zhu Y J, et al. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation[J]. Atmospheric Environment, 2015,107:118-128.
[11]
Wang W J, Xu Z B, Lu W Z. Three improved neural network models for air quality forecasting[J]. Engineering Computations, 2003,2(20):192-210.
[12]
Zhang J S, Ding W F. Prediction of air pollutants concentration based on an extreme learning machine:The case of Hong Kong[J]. International Journal of Environmental Research and Public Health, 2017,2(14):114.
[13]
侯雅文,王斌会.空气质量指数监控与预测的控制图方法[J]. 统计与信息论坛, 2012,27(8):86-90. Hou Y W, Wang B H. Monitoring air quality index and prediction using control charts[J]. Statistics & Information Forum, 2012,27(8):86-90.
[14]
罗静,田茂再.基于负二项回归模型的空气质量指数分析[J]. 统计与信息论坛, 2017,32(7):88-94. Luo J, Tian M Z. Analysis on air quality index based on negative binomial regression models[J]. Statistics & Information Forum, 2017, 32(7):88-94.
[15]
谢永华,张鸣敏,杨乐,等.基于支持向量机回归的城市PM2.5浓度预测[J]. 计算机工程与设计, 2015,36(11):3106-3111. Xie Y H, Zhang M M, Yang L, et al. Predicting urban PM2.5 concentration in China using support vector regression[J]. Computer Engineering and Design, 2015,36(11):3106-3111.
[16]
王敏,邹滨,郭宇,等.基于BP人工神经网络的城市PM2.5浓度空间预测[J]. 环境污染与防治, 2013,35(9):63-66+70. Wang M, Zhou B, Guo Y, et al. BP artificial neural network-based analysis of spatial variability of urban PM2.5concentration[J]. Environmental Pollution and Control, 2013,35(9):63-66+70.
[17]
陈宁,毛善君,李德龙,等.多基站协同训练神经网络的PM2.5预测模型[J]. 测绘科学, 2018,43(7):87-93. Chen N, Mao S J, Li D L, et al. PM2.5 prediction model based on multi-station co-training neural network[J]. Science of Surveying and Mapping, 2018,43(7):87-93.
[18]
谢志英.北京地区空气污染现状及影响因子的地学分析研究[D]. 兰州:兰州交通大学, 2015. Xie Y J. Study on air pollution situation and its influencing factors based on geoscience in Beijing area[D]. lanzhou:Lanzhou Jiaotong University, 2015.
[19]
周景博,王鑫,杜婉君,等.北京市空气污染指数及其影响因素分析[J]. 中国环境监测, 2015,31(2):53-56. Zhou J B, Wang X, Du W J, et al. Analysis of air pollution index and its influence factors in Beijing[J]. Environmental Monitoring in China, 2015,31(2):53-56.
[20]
王嫣然,张学霞,赵静瑶,等.2013~2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016,25(1):103-111. Wang Y R, Zhang X X, Zhao J Y, et al. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013~2014[J]. Ecology and Environment Sciences, 2016,25(1):103-111.
[21]
邹旭东,杨洪斌,张云海,等.1951~2012年沈阳市气象条件变化及其与空气污染的关系分析[J]. 生态环境学报, 2015,24(1):76-83. Zhou X D, Yang H B, Zhang Y H, et al. Changes of meteorological factors in Shenyang city during 1951~2012 and its relationship with air pollution[J]. Ecology and Environment Sciences, 2015,24(1):76-83.
[22]
梅梅,朱蓉,孙朝阳.京津冀及周边"2+26"城市秋冬季大气重污染气象条件及其气候特征研究[J]. 气候变化研究进展, 2019,15(3):270-281. Mei M, Zhu R, Sun C Y. Study on meteorological conditions for heavy air pollution and its climatic characteristics in "2+26" cities around Beijing-Tianjin-Hebei region in autumn and winter[J]. Climate Change Research, 2019,15(3):270-281.
[23]
王占山,李云婷,董欣,等.北京城区大气污染物"周末效应"分析[J]. 中国科学院大学学报, 2015,32(6):843-850. Wang Z S, Li Y T, Dong X, et al. Analysis on weekend effect of air pollutants in urban atmosphere of Beijing[J]. Journal of University of Chinese Academy of Sciences, 2015,32(6):843-850.
[24]
Elkus B, Wilson K R. Photochemical air pollution:Weekend-weekday differences[J]. Atmospheric Environment, 1977,11(6):509-515.
[25]
Marr L C, Harley R A. Modeling the effect of weekday-weekend differences in motor vehicle emissions on photochemical air pollution in central California[J]. Environmental Science & Technology, 2002,36(19):4099-4106.
[26]
栾桂杰,殷鹏.北京市气温与空气污染指数相关性分析[J]. 中国公共卫生, 2017,33(1):22-24. Luan G J, Yin P. Correlation between ambient temperature and air pollution index in Beijing[J]. Chinese Journal of Public Health, 2017,33(1):22-24.
[27]
Zheng H M, Shang X X. Study on prediction of atmospheric PM2.5 based on RBF neural network[C]//2013 Fourth International Conference on Digital Manufacturing & Automation, 2013:1287-1289.
[28]
Lu Y W, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Transactions on Neural Networks, 1998, 9(2):308-318.
[29]
张文杰,蒋烈辉.一种基于遗传算法优化的大数据特征选择方法[J]. 计算机应用研究, 2018,37(1):1-5. Zhang W J, Jiang L H. Using genetic algorithm for feature selection optimization on big data processing[J]. Application Research of Computers, 2018,37(1):1-5.
[30]
胡冬翠,谢福鼎,杨俊,等.一种基于空间信息和遗传算法的半监督高光谱图像分类方法[J]. 测绘通报, 2018,(10):22-26. Hu D C, Xie F D, Yang J, et al. A method of semi-supervised classification for hyperspectral images based on spatial information and genetic optimization[J]. Bulletin of Surveying and Mapping, 2018, (10):22-26.
[31]
宋国君,国潇丹,杨啸,等.沈阳市PM2.5浓度ARIMA-SVM组合预测研究[J]. 中国环境科学, 2018,38(11):4031-4039. Song G J, Guo X D, Yang X, et al. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang[J]. China Environmental Science, 2018,38(11):4031-4039.
[32]
白鹤鸣,沈润平,师华定,等.基于BP神经网络的空气污染指数预测模型研究[J]. 环境科学与技术, 2013,36(3):186-189. Bai H M, Shen R P, Shi H D, et al. Forecasting model of air pollution index based on BP neural network[J]. Environmental Science & Technology, 2013,36(3):186-189.