Derivation of aquatic life water quality criteria for antimonyin freshwater and its implication for water quality standard in China
GUO Wen-jing1,2,3, ZHANGZhi-yong1,2, FU Zhi-you3, YAN Zhen-fei3, FENGCheng-lian3, LIU Xin-mei3, WANG Yu3, LIXiao-feng3, LI Hui-xian3, ZHAO Xiao-li3
1. Institute of Agricultural Resources and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
2. Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the P. R. China, Nanjing 210014, China;
3. State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Aquatic life freshwater quality criteria of Sb for protecting aquatic lifewas absent to date in China. In this study, freshwater species and relative toxicity data of Sb were collected and screened. To derive aquatic life ambient freshwater quality criteria of Sb, assessment factor method, toxicity percentile rank method, and species sensitivity distribution(SSD) method were used in this study. Acute quality criteria and chronic quality criteria, which wererecommended as the freshwater quality criteria of Sb, were derived to be 466.62and 88.71μg/Lbased on SSD method. After comparison and analysis with existing relevant water quality standard in China and internationally, water quality standard of Sb in China was suggested to be revised as "water quality standard for the protection of freshwater aquatic organisms" and "water quality standard for the protection of human health" respectively to avoid "over-protection" of water quality standards for aquatic organisms.
郭文景, 张志勇, 符志友, 闫振飞, 冯承莲, 刘新妹, 王宇, 李晓峰, 李会仙, 赵晓丽. 锑的淡水水质基准及其对我国水质标准的启示[J]. 中国环境科学, 2020, 40(4): 1628-1636.
GUO Wen-jing, ZHANGZhi-yong, FU Zhi-you, YAN Zhen-fei, FENGCheng-lian, LIU Xin-mei, WANG Yu, LIXiao-feng, LI Hui-xian, ZHAO Xiao-li. Derivation of aquatic life water quality criteria for antimonyin freshwater and its implication for water quality standard in China. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(4): 1628-1636.
田贺忠,赵丹,何孟常,等.2005年中国燃煤大气锑排放清单[J]. 中国环境科学, 2010,30(11):1550-1557. Tian H Z, Zhao D, He M C, et al. Atmospheric antimony emission inventories from coal combustion in China in 2005[J]. China Environmental Science, 2010,30(11):1550-1557.
[2]
罗英杰,王小烈,柳群义,等.中国锑资源产业发展形势及对策建议[J]. 资源与产业, 2016,18(1):75-81. Luo Y J, Wang X L, Liu Q Y, et al. Development actuality and suggestions of China's antimony industry[J]. Resources & Industries, 2016,18(1):75-81.
[3]
Liu F, Le X C, Mcknight-Whitford A, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010,32(5):401-413.
[4]
Filella M, Belzile N, Chen Y-W. Antimony in the environment:A review focused on natural waters:II[J]. Relevant solution chemistry[J]. Earth-science Reviews, 2002,59(1):265-285.
[5]
Sundar S, Chakravarty J. Antimony toxicity[J]. International Journal of Environmental Research & Public Health, 2010,7(12):4267-4277.
[6]
Gebel T, Christensen S, Dunkelberg H. Comparative and environmental genotoxicity of antimony and arsenic[J]. Anticancer Research, 1997,17(4):2603-2607.
[7]
吴丰昌,冯承莲,曹宇静,等.锌对淡水生物的毒性特征与水质基准的研究[J]. 生态毒理学报, 2011,6(4):367-382. Wu F C, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria[J]. Asian Journal of Ecotoxicology, 2011,6(4):367-382.
[8]
吴丰昌,冯承莲,曹宇静,等.我国铜的淡水生物水质基准研究[J]. 生态毒理学报, 2011,6(6):617-628. Wu F C, Feng C L, Cao Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China[J]. Asian Journal of Ecotoxicology, 2011,6(6):617-628.
[9]
Wang X, He M, Xi J, et al. Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, hunan province, China[J]. Microchemical Journal, 2011,97(1):4-11.
[10]
Fu Z, Wu F, Amarasiriwardena D, et al. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in hunan, China[J]. Science of the Total Environment, 2010,408(16):3403-3410.
[11]
张晓健.甘肃陇星锑污染事件和四川广元应急供水[J]. 给水排水, 2016,42(10):9-20. Zhang X J. Antimony pollution accident of Gansu Longxing enterprise and emergent water supply in Guangyuan City[J]. Water & Wastewater Engineering, 2016,42(10):9-20.
[12]
GB 3838-2002地表水环境质量标准[S]. GB 3838-2002 Environmental quality standards for surface water[S].
[13]
GB 5749-2006生活饮用水卫生标准[S]. GB 5749-2006 Standards for drinking water quality[S].
[14]
冯承莲,吴丰昌,赵晓丽,等.水质基准研究与进展[J]. 中国科学:地球科学, 2012,55(6):882-891. Feng C L, Wu F C, Zhao X L, et al. Water quality criteria research and progress[J]. Science China Earth Sciences, 2012,55(6):882-891.
[15]
金小伟,王业耀,王子健.淡水水生态基准方法学研究:数据筛选与模型计算[J]. 生态毒理学报, 2014,9(1):1-13. Jin X W, Wang Y Y, Wang Z J. Methodologies for deriving aquatic life criteria (ALC):data screening and model calculation[J]. Asian Journal of Ecotoxicology, 2014,9(1):1-13.
[16]
金小伟,雷炳莉,许宜平,等.水生态基准方法学概述及建立我国水生态基准的探讨[J]. 生态毒理学报, 2009,4(5):609-615. Jin X W, Lei B L, Xu Y P, et al. Methodologies for deriving water quality criteria to protect aquatic life (ALC) and proposal for development of ALC in China:a review[J]. Asian Journal of Ecotoxicology, 2009,4(5):609-616.
[17]
吴丰昌,孟伟,曹宇静,等.镉的淡水水生生物水质基准研究[J]. 环境科学研究, 2011,24(2):172-184. Wu F C, Meng W, Cao Y J, et al. Derivation of aquatic life water quality criteria for cadmium in freshwater in China[J]. Research of Environmental Sciences, 2011,24(2):172-184.
[18]
张瑞卿,吴丰昌,李会仙,等.应用物种敏感度分布法研究中国无机汞的水生生物水质基准[J]. 环境科学学报, 2012,32(2):440-449. Zhang R Q, Wu F C, Li H X, et al. Deriving aquatic water quality criteria for inorganic mercury in China by species sensitivity distributions[J]. Acta Scientiae Circumstantiae, 2012,32(2):440-449.
[19]
洪鸣,王菊英,张志锋,等.海水中金属铅水质基准定值研究[J]. 中国环境科学, 2016,36(2):626-633. Hong M, Wang J Y, Zhang Z F, et al. Study on seawater quality criteria for lead[J]. China Environmental Science, 2016,36(2):626-633.
[20]
刘娜,金小伟,王业耀,等.生态毒理数据筛查与评价准则研究[J]. 生态毒理学报, 2016,11(3):1-10. Liu N, Jin X W, Wang Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data[J]. Asian Journal of Ecotoxicology, 2016,11(3):1-10.
[21]
Kooijman S. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987,21(3):269-276.
[22]
Stephan C E, Mount D I, Hansen D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[M]. Washington, DC, 1985.
[23]
Canadian Council of Ministers of the Environment. Protocol for the derivation of water quality guidelines for the protection of aquatic life[M]. Winnipeg, Manitoba, 2007.
[24]
吴丰昌,李会仙,冯承莲.水质基准理论与方法学及其案例研究[M]. 北京:科学出版社, 2012. Wu F C, Li H X, Feng C L. Theory of water quality criteria and cases study[M]. Beijing:Science Press, 2012.
[25]
Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data[J]. Ecotoxicology & Environmental Safety, 1993,25(1):48-63.
[26]
Solomon K R, Giesy J P, Lapoint T W, et al. Ecological risk assessment of atrazine in north American surface waters[J]. Environmental Toxicology & Chemistry, 2013,32(1):10-11.
[27]
HJ 831-2017淡水水生生物水质基准制定技术指南[S]. HJ 831-2017 Technical guideline for deriving water quality criteria for the protection of freshwater aquatic organisms[S].
[28]
Díaz S, Villares R, Vázquez M D, et al. Physiological effects of exposure to arsenic, mercury, antimony and selenium in the aquatic moss fontinalis antipyretica hedw[J]. Water, Air, & Soil Pollution, 2013,224(8):1659-1667.
[29]
Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to hyalellaazteca at two levels of water hardness[J]. Environmental Toxicology and Chemistry, 2005,24(3):641-652.
[30]
TAI Environmental Sciences Inc. Results of Acute Toxicity Testing of Antimony Trichloride Using the Freshwater Species Chironomus tentans, Physaheterostropha, Ictalurus punctatus, Hyalellaazteca, Hydra oligactisand Chlorohydraviridissimus[R]. EBASCO Services Inc., Bellevue, 1990.
[31]
Brooke L, Call D, Poirier S, et al. Acute toxicity of antimony iii to several species of freshwater organisms[J]. Partial Fulfillment of Work Assignment, 1986,45:1-12.
[32]
Williams P L, Dusenbery D B. Aquatic toxicity testing using the nematode, caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 1990,9(10):1285-1290.
[33]
Birge W J, Black J A, Westerman A G. Effects of polychlorinated biphenyl compounds and proposed PCB-replacement products on embryo-larval stages of fish and amphibians[M]. Lexington, Kentucky, 1978.
[34]
Chen L-H, Yang J-L. Acute toxicity of antimony chloride and its effects on oxygen consumption of common carp (cyprinuscarpio)[J]. Bulletin of Environmental Contamination and Toxicology, 2007,78(6):459-462.
[35]
Lin H, Hwang P. Acute and chronic effects of antimony chloride (SbCl3) on tilapia (oreochromismossambicus) larvae[J]. Bulletin of Environmental Contamination and Toxicology, 1998,61(1):129-134.
[36]
Nam S-H, Yang C-Y, An Y-J. Effects of antimony on aquatic organisms (larva and embryo of oryziaslatipes, moinamacrocopa, simocephalusmixtus, and pseudokirchneriellasubcapitata)[J]. Chemosphere, 2009,75(7):889-893.
[37]
熊旭,刘燕群,叶超,等.三氯化锑对泥鳅的毒性效应[J]. 环境与健康杂志, 2014,31(6):534-535. Xiong X, Liu Y Q, Ye C, et al. The toxicity effectofantimony trichlorideto misgurnusanguillicaudatus[J]. Journal of Environmental Health, 2014,31(6):534-535.
[38]
Khangarot B, Ray P. Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea Daphnia magna straus[J]. Ecotoxicology and Environmental Safety, 1989,18(2):109-120.
[39]
Leblanc G A. Acute toxicity of priority pollutants to water flea (daphnia magna)[J]. Bulletin of Environmental Contamination and Toxicology, 1980,24(1):684-691.
[40]
Sauvant M, Pepin D, Groliere C, et al. Effects of organic and inorganic substances on the cell proliferation of l-929fibroblasts and tetrahymena pyriformis GL protozoa used for toxicological bioassays[J]. Bulletin of Environmental Contamination and Toxicology, 1995, 55(2):171-178.
[41]
Buccafusco R, Ells S, Leblanc G. Acute toxicity of priority pollutants to bluegill (lepomismacrochirus)[J]. Bulletin of Environmental Contamination and Toxicology, 1981,26(1):446-452.
[42]
Stephan C. Results of toxicity tests. Memo to J Carroll[R]. USEPA, 1978.
[43]
Tarzwell C, Henderson C. Toxicity of less common metals to ashes[J]. Industry Wastes, 1960,5:12-13.
[44]
USEPA. Memorandum to C[M]. Duluth, Minnesota, 1987.
[45]
Birge W J, Hudson J E, Black J A, et al. Embryo-larval bioassays on inorganic coal elements and in situ biomonitoring of coal-waste effluents[R]. Surface mining and fish/wildlife needs in the Eastern United States (PB 298353), Springfield, 1978.
[46]
Khangarot B, Das S. Acute toxicity of metals and reference toxicants to a freshwater ostracod, cypris subglobosasowerby, 1840 and correlation to EC50 values of other test models[J]. Journal of Hazardous Materials, 2009,172(2):641-649.
[47]
USEPA. Indepth studies on health and environmental impacts of selected water pollutants[M]. Duluth, MN, 1978.
[48]
Yang J-L, Hu T-J, Lee H-Y. Sublethal antimony (iii) exposure of freshwater swamp shrimp (macrobrachiumnipponense):Effects on oxygen consumption and hepatopancreatic histology[J]. Journal of Water Resource and Protection, 2010,2(1):42-47.
[49]
Khangarot B. Toxicity of metals to a freshwater tubificid worm, tubifex tubifex (muller)[J]. Bulletin of Environmental Contamination and Toxicology, 1991,46(6):906-912.
[50]
Curtis M, Ward C. Aquatic toxicity of forty industrial chemicals:Testing in support of hazardous substance spill prevention regulation[J]. Journal of Hydrology, 1981,51(1):359-367.
[51]
Leblanc G A, Dean J W. Antimony and thallium toxicity to embryos and larvae of fathead minnows (pimephalespromelas)[J]. Bulletin of Environmental Contamination and Toxicology, 1984,32(1):565-569.
[52]
De Jong L D D, Roman W. Tolerance of chlorella vulgaris for metallic and non-metallic ions[J]. Antonie van Leeuwenhoek, 1965,31(1):301-313.
[53]
Fu Z, Wu F, Mo C, et al. Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China[J]. Microchemical Journal, 2011,97(1):12-19.
[54]
He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012,421:41-50.
[55]
Directive C. On the quality of water intended for human consumption[J]. Official Journal of the European Communities, 1998,330:32-54.
[56]
Parliament E. Directive 2008/105/ec of the European parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing[J]. Official Journal of the European Union, 2008,348:84-97.
[57]
郑丙辉,刘琰.地表水环境质量标准修订的必要性及其框架设想[J]. 环境保护, 2014,42(20):39-41. Zheng B H, Liu Y. Necessity and framework suggestion for revising water quality standards for surface water[J]. Environmental Protection, 2014,42(20):39-41.
[58]
GB 50282-98城市给水工程规划规范[S]. GB 50282-98 Code for urban water supply engineering planning[S].
[59]
GB30770-2014锡、锑、汞工业污染物排放标准[S]. GB30770-2014 Emission standards of pollutants for stannum, antimony and mercury industries[S].
[60]
GB 4287-2012纺织染整工业水污染物排放标准[S]. GB 4287-2012 Discharge standards of water pollutants for dyeing and finishing of textile industry[S].
[61]
DB 43/350-2007工业废水中锑污染物排放标准[S]. DB 43/350-2007 Discharge standard of antimony and compounds in industrial waste water pollutants[S].
[62]
DB32/3432-2018纺织染整工业废水中锑污染物排放标准[S]. DB32/3432-2018 Discharge standard of antimony pollutants in wastewaterfor textile dyeing and finishing[S].
[63]
Filella M, Belzile N, Chen Y-W. Antimony in the environment:A review focused on natural waters:I. Occurrence[J]. Earth-science Reviews, 2002,57(1):125-176.
[64]
Guo W, Fu Z, Wang H, et al. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan, China[J]. Microchemical Journal, 2018,137:181-189.
[65]
Fu Z, Wu F, Mo C, et al. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China[J]. Science of the Total Environment, 2016,539:97-104.
[66]
Zhu J, Wu F, Deng Q, et al. Environmental characteristics of water near the Xikuangshan antimony mine, Hunan province[J]. Acta Scientiae Circumstantiae, 2009,29(2):655-661.
[67]
何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004,16(1):131-135. He M C, Wan H Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Progress in Chemistry, 2004,16(1):131-135.
[68]
Ungureanu G, Santos S, Boaventura R, et al. Arsenic and antimony in water and wastewater:Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015,151:326-342.
[69]
孙蕾,黄懿,胡军,等.工业废水中锑污染物排放标准制定的原则与依据[J]. 中国环境监测, 2009,25(6):54-58. Sun L, Huang Y, Hu J, et al. The principles and basis of setting emission standards for antimonypollutant in industrial waste water[J]. Environmental Monitoring in China, 2009,25(6):54-58.