Effect of relative humidity on oxidation products of toluene in the presence of NOx
GUO Xin-mei1, YANG Shu-shen1, HUANG Dao2, LI Zhen-yang1, WU Miao-miao2, NAN Cheng-xue2
1. School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450000, China;
2. Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310000, China
A flow tube reactor was used to simulate the reaction of toluene and OH radical in the presence of NOx.The products formed in gas phase and particle phase under different relative humidity conditions (17.5%, 35%, 50%, 70%) were determined. The yields of detected products and organic carbon (OC) in the gas and particle phases were reported. The present study show that the relative humidity not only affects the ratio of the reaction pathway of toluene and×OH but also the yield and oxidation degree of the product.
郭新梅, 杨书申, 黄道, 李臻阳, 吴苗苗, 南成学. NOx存在条件下相对湿度对甲苯氧化产物的影响[J]. 中国环境科学, 2020, 40(6): 2335-2344.
GUO Xin-mei, YANG Shu-shen, HUANG Dao, LI Zhen-yang, WU Miao-miao, NAN Cheng-xue. Effect of relative humidity on oxidation products of toluene in the presence of NOx. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(6): 2335-2344.
朱少峰,黄晓锋,何凌燕,等.深圳大气VOCs浓度的变化特征与化学反应活性[J].中国环境科学, 2012,32(12):2140-2148. Zhu S F, Huang X F, He L Y, et al.Variation characteristics and chemical reactivity of ambient VOCs in Shenzhen [J].China Environmental Science, 2012,32(12):2140-2148.
[2]
Sun J, Wu F, Hu B, et al.VOC characteristics, emissions and contributions to SOA formation during hazy episodes [J].Atmospheric Environment, 2016,141:560-570.
[3]
陆思华,白郁华,张广山,等.大气中挥发性有机化合物(VOCs)的人为来源研究[J].环境科学学报, 2006,26(5):757-763. Lu S H, Bai Y H, Zhang G S, et al.Source apportionment of anthropogenic emissions of volatile organic compounds [J].Acta Scientiae Circumstantiae, 2006,26(5):757-763.
[4]
Sarkhosh M, Mahvi A H, Yunesian M, et al.Source apportionment of volatile organic compounds in Tehran, Iran [J].Bulletin of Environmental Contamination and Toxicology, 2013,90(4):440-445.
[5]
张桂芹,姜德超,李曼,等.城市大气挥发性有机物排放源及来源解析[J].环境科学与技术, 2014,37(120):195-200. Zhang G Q, Jiang D C, Li M, et al.Emission sources and analytical sources of volatile organic compounds in urban atmospheric [J].Environmental Science and Technology, 2014,37(120):195-200.
[6]
Chagger H K, Jones J M, Pourkashanian M, et al.Emission of volatile organic compounds from coal combustion [J].Fuel, 1999,78(13): 1527-1538.
[7]
王倩,陈长虹,王红丽,等.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J].环境科学, 2013,34(2):18-27. Wang Q, Chen C H, Wang H L, et al.Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China [J].Environmental Science, 2013,34(2):18-27.
[8]
周杨.华北地区气溶胶理化特性、来源解析及实验室模拟[D].济南:山东大学, 2012. Zhou Y.Characteristics and sources of aerosol in North China Plain and smog chamber simulation [D].Jinan: Shandong University, 2012.
[9]
Yuan B, Hu W W, Shao M, et al.VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China [J].Atmospheric Chemistry and Physics, 2013,13(17):8815-8832.
[10]
Hallquist M, Wenger J C, Baltensperger U, et al.The formation, properties and impact of secondary organic aerosol: current and emerging issues [J].Atmospheric Chemistry and Physics, 2009,9(14): 5155-5236.
[11]
Ryzhkov A B, Ariya P A.The importance of water clusters (H2O)n (n = 2, …, 4) in the reaction of Criegee intermediate with water in the atmosphere [J].Chemical Physics Letters, 2006,419(4-6):479-485.
[12]
Pye H O T, Pouliot G A.Modeling the role of alkanes, polycyclic aromatic hydrocarbons, and their oligomers in secondary organic aerosol formation [J].Environmental Science and Technology, 2012, 46(11):6041-6047.
[13]
Gong H, Matsunaga A, Ziemann P J.Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals [J].The Journal of Physical Chemistry A, 2005, 109(19):4312-4324.
[14]
Yong B L, Ziemann P J.Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx [J].Aerosol Science and Technology, 2009,43(6):604-619.
[15]
Nguyen T B, Roach P J, Laskin J, et al.Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol [J].Atmospheric Chemistry and Physics, 2011,11(14):6931-6944.
[16]
Hu D, Kamens R M.Evaluation of the UNC toluene-SOA mechanism with respect to other chamber studies and key model parameters [J].Atmospheric Environment, 2007,41(31):6465-6477.
[17]
Iii D R C, Mader B T, Kalberer M, et al.The effect of water on gas particle partitioning of secondary organic aerosol: II.m-xylene and 1,3,5-trimethylbenzene photooxidation systems [J].Atmospheric Environment, 2001,35(35):6073-6085.
[18]
Jia L, Xu Y F.Different roles of water in secondary organic aerosol formation from toluene and isoprene [J].Atmospheric Chemistry and Physics, 2018,18(11):8137-8154.
[19]
Kamens R M, Zhang H, Chen E H, et al.Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: Water and particle seed effects [J].Atmospheric Environment, 2011,45(13): 2324-2334.
[20]
Zhou Y, Zhang H F, Parikh H M, et al.Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects (II) [J].Atmospheric Environment, 2011,45(23):3882-3890.
[21]
Edney E O, Driscoll D J, Speer R E, et al.Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air mixtures [J].Atmospheric Environment, 2000,34(23):3907-3919.
[22]
Hinks M L, Montoyaaguilera J, Ellison L, et al.Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene [J].Atmospheric Chemistry and Physics, 2018, 18(3):1643-1652.
[23]
Liu T Y, Huang D D, Li Z J, et al.Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity [J].Atmospheric Chemistry and Physics, 2018,18(8):5677-5689.
[24]
Calvert J G, Atkinson R, Becker K H, et al.The mechanisms of atmospheric oxidation of aromatic hydrocarbons [M].New York: Oxford University Press, 2002.
[25]
Khare P, Kumar N, Kumari K M, et al.Atmospheric formic and acetic acids:An overview [J].Reviews of Geophysics, 1999,37(2):227-248.
[26]
Baboukas E D, Kanakidou M, Mihalopoulos N.Carboxylic acids in gas and particulate phase above the Atlantic Ocean [J].Journal of Geophysical Research Atmospheres, 2000,105(D11):14459-14471.
[27]
Yao X, Fang M, Chan C K.Size distributions and formation of dicarboxylic acids in atmospheric particles [J].Atmospheric Environment, 2002,36(13):2099-2107.
[28]
Ervens B, Volkamer R.Glyoxal processing outside clouds: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles [J].Atmospheric Chemistry and Physics, 2010,10(5): 8219-8244.
[29]
Griffith E C, Carpenter B K, Shoemaker R K, et al.Photochemistry of aqueous pyruvic acid [J].Proceedings of the National Academy of Sciences, 2013,110(29):11714-11719.
[30]
Hildebrandt L, Donahue N M, Pandis S N.High formation of secondary organic aerosol from the photo-oxidation of toluene [J].Atmospheric Chemistry and Physics, 2009,9(9):2973-2986.
[31]
Cao G, Jang M.An SOA Model for toluene oxidation in the presence of inorganic aerosols [J].Environmental Science and Technology, 2010,44(2):727-733.
[32]
Ng N L, Kroll J H, Chan A W H, et al.Secondary organic aerosol formation from m-xylene, toluene, and benzene [J].Atmospheric Chemistry and Physics, 2007,7(14):3909-3922.