Volatile organic compounds (VOCs) in Dushanzi, Xinjiang: Compositions and contributions to the formation of O3 and SOA
ZHANG Yuan-yu1, WANG Xin-ming2, LIU Xiao-ling1, ZHANG Yan-li2, DILINUER·Talip1, ZHANG Xiao-xiao1, ABULIKEMU·Abulizi1, LIU Wei3
1. Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China;
2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou 510640, China;
3. Dushanzi Environmental Research and Monitoring Station, Karamay 833699, China
Air samples were collected in the Dushanzi district of Xinjiang Uyghur Autonomous Region, China during the non-heating, heating and sandstorm periods for the analysis of volatile organic compounds (VOCs) by a preconcentrator coupled to a gas chromatography/mass spectrometer according tothe USEPATO-14 standard method. The results showed that group compositions of VOCs in Dushanzi district during the sampling period were ranked in the order ofalkanes (61.80%), alkenes (18.62%), aromatics (10.16%) and acetylene (9.42%). The secondary organic aerosol (SOA) formation potentials of VOCs as estimated by fractional aerosol coefficient (FAC) method revealed that aromatics contributed the most to SOA formation during non-heating, heating and sandstorm period, with contribution percentages of 97.8%, 87.28% and 69.52%, respectively. SPSS software and generalized additive model (GAM) were used to analyze the relationships among meteorological factors, VOCs, O3 and NOx. The results demonstrated that high temperature and dry weather were conducive to the formation of O3. The O3 formation in Dushanzi district seemed to be VOCs-limited, and alkenes such as 1-butene showed significant linear correlation with O3.
张渊钰, 王新明, 刘晓玲, 张艳利, 迪丽努尔·塔力甫, 张潇潇, 阿布力克木·阿不力孜, 刘伟. 新疆独山子区VOCs组成及其对O3和SOA的贡献[J]. 中国环境科学, 2020, 40(5): 1915-1923.
ZHANG Yuan-yu, WANG Xin-ming, LIU Xiao-ling, ZHANG Yan-li, DILINUER·Talip, ZHANG Xiao-xiao, ABULIKEMU·Abulizi, LIU Wei. Volatile organic compounds (VOCs) in Dushanzi, Xinjiang: Compositions and contributions to the formation of O3 and SOA. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(5): 1915-1923.
Feng Y L, Chen Y J, Guo H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmospheric Research, 2009,92(4):434-442.
[2]
LinP, Hu M, DengZ, et al. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon[J]. Journal of Geophysical Research Atmospheres, 2009,114(D2).
[3]
Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014,514(7521):218-222.
[4]
王扶潘,朱乔,冯凝,等.深圳大气中VOCs的二次有机气溶胶生成潜势[J]. 中国环境科学, 2014,34(10):2449-2457. Whang F P, Zhu Q, Feng N, et al. The generation potential of secondary organic aerosol of atmospheric VOCs in Shenzhen[J]. China Environmental Science, 2014,34(10):2449-2457.
[5]
Daniel S T; Albert A P, Neil M D, et al. Secondary organic aerosol formation from intermediate-volatility organic compounds:cyclic, linear, and branched alkanes[J]. Environmental Science & Technology, 2012,46(16):8773-8781.
[6]
吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学, 2009,30(4):969-975. Lv Z F, Hao J M, Duan J C, et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime[J]. Environmental Science, 2009,30(4):969-975.
[7]
王倩,陈长虹,王红丽,等.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013,34(2):424-433. Wang Q, Chen C H, Wang H L, et al. Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China[J]. Environmental Science, 2013,34(2):424-433.
[8]
邹宇,邓雪娇,李菲,等.广州番禺大气成分站复合污染过程VOCs对O3与SOA的生成潜势[J]. 环境科学, 2017,38(6):2246-2255. Zou Y, Deng X J, Li F, et al. Effect of VOCs on O3 and SOA formation potential during the combinedpollution process in Guangzhou Panyu atmospheric composition station[J]. Environmental Science, 2017, 38(6):2246-2255.
[9]
Dechapanya W, Russell M, Allen D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, Texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program[J]. Aerosol science and technology, 2004, 38(S1):156-166.
[10]
Barthelmie R J, Pryor S C. Secondary organic aerosols:formation potential and ambient data[J]. Science of the Total Environment, 1997,205(2/3):0-178.
[11]
Wang H X, Zhou L G, Tang X Y. Ozone Concentrations in Rural Regions of the Yangtze Delta in China[J]. Journal of Atmospheric Chemistry, 2006,54(3):255-265.
[12]
Lehman J, Swinton K, Bortnick S, et al. Spatio-temporal characterization of tropospheric ozone across the eastern United States[J]. Atmospheric Environment, 2004,38(26):4357-4369.
[13]
Wang Y, Hopke P K, Xia X, et al. Source apportionment of airborne particulate matter using inorganic and organic species as tracers[J]. Atmospheric Environment, 2012,55(3):525-532.
[14]
Wang H L, Chen C H, Wang Q, et al. Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement[J]. Atmospheric Environment, 2013,80(6):488-498.
[15]
Yusan T, Dilinuer T, Wang X, et al. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China[J]. Atmospheric research, 2019,218:257-268.
[16]
沈浩,迪丽努尔·塔力甫,王新明,等.新疆独山子石化区域PM2.5中水溶性无机离子的形成机制[J]. 环境化学, 2018,37(11):113-121. Shen H, Dilinuer T, Wang X M, et al. Formation mechanism of water-soluble inorganic ions inPM2.5 in Dushanzi petrochemical district, Xinjiang[J]. environmental chemistry, 2018,37(11):113-121.
[17]
张艳利.区域大气二次污染物有机前体物和消耗臭氧层物质研究[D]. 北京:中国科学院大学, 2013. Zhang Y L.Study on organic precursors and ozone depleting substances of regional secondary atmospheric pollutants[D]. Beijing:University of Chinese Academy of Sciences, 2013.
[18]
钟漂斯.广州市黄埔区臭氧污染特征研究[D]. 广州:广州大学, 2018. Zhong P S. Study on characteristics of ozone pollution in huangpu district, Guangzhou[D]. Guangzhou:Guangzhou University, 2018.
[19]
陈林,王式功,王莉莉.新疆阜康地区秋季大气NOx和O3变化特征及影响要素[J]. 干旱气象, 2012,30(3):345-352. Chen L, Wang S G, Wang L L. The change characteristics and influencing factors of NOx and O3 in autumn in fukang region, xinjiang[J]. Journal of Arid Meteorology, 2012,30(3):345-352.
[20]
刘新春,钟玉婷,何清,等.乌鲁木齐及周边城市空气质量变化特征及影响因素分析[J]. 沙漠与绿洲气象, 2010,4(4):12-17. Liu X C, Zhong Y T, He Q, et al. The variety characteristics and influencing factors of air quality in Urumqi and its surrounding cities[J]. Desert and Oasis Meteorology, 2010,4(4):12-17.
[21]
谭艳梅,王旭,马禹.新疆雾天气的分析[J]. 沙漠与绿洲气象, 2002,25(2):9-10. Tan Y M, Wang X, Ma Y. The analysis of in Xinjiang[J]. Desert and Oasis Meteorology, 2002,25(2):9-10.
[22]
曾贤刚,阮芳芳,姜艺婧.中国臭氧污染的空间分布和健康效应[J]. 中国环境科学, 2019,39(9):4025-4032. Zeng X G, Ruan F F, Jiang Y J. Spatial distribution and health effects of ozone pollution in China[J]. China Environmental Science, 2019, 39(9):4025-4032.
[23]
谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J]. 热带气象学报, 2007,23(5):101-106. Tan J G, Lu G L, Geng F H, et al. Analysis and prediction of surface O3 concentration and related meteorological factors in summertime in urban area of Shanghai[J]. Journal of Tropical Meteorology, 2007, 23(5):101-106.
[24]
王宏,陈晓秋,林长城,等.福州近地层臭氧分布及与天气条件关系的研究[C]//中国气象学会年会, 2011. Wang H, Chen X Q, Lin C C, et al. Study on ozone distribution and its relationship with weather conditions in Fuzhou[C]//Annual meeting of China meteorological society, 2011.
[25]
李颖若,汪君霞,韩婷婷,等.利用多元线性回归方法评估气象条件和控制措施对APEC期间北京空气质量的影响[J]. 环境科学, 2019, 40(3):16-26. Li Y R, Wang J X, Han T T, et al. Using multiple linear regression method to evaluate the impact of meteorological conditions and control measures on air quality in Beijing during APEC 2014[J]. Environmental Science, 2019,40(3):16-26.
[26]
Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000,34(12-14):2063-2101.
[27]
Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments[J]. Atmospheric Environment, 1999,33(12):1821-1845.
[28]
Kinosian John R. Ozone-precursor relationships from EKMA diagrams[J]. Environmental Science & Technology, 1982,16(12):880-883.
[29]
罗蕊,王学中,林国梁,等.一次污染物对臭氧生成的影响研究[J]. 环境科学研究, 2006,19(4):26-30. Luo R, Wang X Z, Lin G L, et al. Study on the impact of primary pollutants on ozone formation[J]. Environmental Science, 2006, 19(4):26-30.
[30]
邓雪娇,王新明,赵春生,等.珠江三角洲典型过程VOCs的平均浓度与化学反应活性[J]. 中国环境科学, 2010,30(9):1153-1161. Deng X J, Wang X M, Zhao C S, et al. The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta Region[J]. China Environmental Science, 2010,30(9):1153-1161.
[31]
司雷霆,王浩,李洋,等.太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2019,39(9):3655-3662. Si L T, Wang H, Li Y. et al. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan[J]. China Environmental Science, 2019,39(9):3655-3662.
[32]
胡成媛,康平,吴锴,等.基于GAM模型的四川盆地臭氧时空分布特征及影响因素研究[J]. 环境科学学报, 2019,39(3):163-174. Hu C Y, Kang P, Wu K, et al.Study of the spatial and temporal distribution of ozone and its influence factors over Sichuan Basin based on generalized additive model[J]. Acta Scientiae Circumstantiae, 2019,39(3):163-174.
[33]
Yan Y, Peng L, Li R, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area:A study in Shuozhou, China[J]. Environmental Pollution, 2017,223:295-304.
[34]
Barletta B, Meinardi S, Rowland F S, et al. Volatile organic compounds in 43Chinese cities[J]. Atmospheric Environment, 2005, 39(32):5979-5990.
[35]
Santos C Y M D, Azevedo D D A, Neto F R D A. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004,38(9):1247-1257.
[36]
Fernández-Martínez G, López-Vilario J M, López-Mahía P, et al. Determination of volatile organic compounds in emissions by coal-fired power stations from Spain[J]. Environmental Technology Letters, 2001,22(5):567-575.
[37]
Fernández-Martínez G, López-Mahıa P, Muniategui-Lorenzo S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001,35(33):5823-5831.
[38]
Grosjean, Daniel. In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J]. Atmospheric Environment, Part A:General Topics, 1992,26(6):953-963.
[39]
Liu Y, Shao M, Fu L, et al. Source profiles of volatile organic compounds (VOCs) measured in China:Part I[J]. Atmospheric Environment, 2008,42(25):6247-6260.
[40]
Yuan B, Shao M, Lu S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010,44(15):1919-1926.
[41]
Barthelmie R J, Pryor S C. Secondary organic aerosols:formation potential and ambient data[J]. Science of the Total Environment, 1997,205(2/3):0-178.
[42]
Dechapanya W, Russell M, Allen D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, Texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program[J]. Aerosol Science and Technology, 2004, 38(S1):156-166.
[43]
Kourtidis K, Ziomas I. Estimation of secondary organic aerosol (SOA) production from traffic emissions in the city of Athens[J]. Global Nest, 1999,1(1):33-39.