Study on the preparation and catalytic oxidation of chlorobenzene over La-M-Co-O/cordierite catalysts
SI Han1,2,3, HUANG Qiong1,2,3, TAO Tao1,3,4, YANG Bo1,2,3, ZHAO Yun-xia1,2,3, CHEN Min-dong1,2,3
1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Nanjing University of Information Science&Technology, Nanjing 210044, China; 2. School of Environmental Science&Engineering, Nanjing University of Information Science&Technology, Nanjing 210044, China; 3. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring&Pollution Control, Nanjing University of Information Science&Technology, Nanjing 210044, China; 4. School of Chemistry and Materials Science, Nanjing University of Information Science&Technology, Nanjing 210044, China
Abstract:La-M-Co-O (M=Mn, Cr, Fe, Ni and Cu)/cordierite catalysts were prepared by complexation method with citric acid. BET, XRD, SEM, H2-TPR and XPS technologies were used to characterize and analyze the performance and microstructure of these catalysts. Meanwhile, the influences of the types of transition metal, the amount transition metal and calcination temperature were studied. The results show that when the calcination temperature was 650℃, the active oxide particles supported on the surface of the catalysts were the most dispersed and displayed the best activity for chlorobenzene oxidation. And when the reaction temperature was 350℃, the conversion rate is as high as 96.4%. The main reason was that the catalysts displayed the structure of LaCoO3 perovskite composite oxides attribute to the high calcination temperature, which was beneficial for improving the performance of catalytic oxidation of chlorobenzene over composite catalysts.
司涵, 黄琼, 陶涛, 杨波, 赵云霞, 陈敏东. La-M-Co-O/堇青石催化剂的制备及催化氧化氯苯[J]. 中国环境科学, 2020, 40(10): 4314-4322.
SI Han, HUANG Qiong, TAO Tao, YANG Bo, ZHAO Yun-xia, CHEN Min-dong. Study on the preparation and catalytic oxidation of chlorobenzene over La-M-Co-O/cordierite catalysts. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(10): 4314-4322.
杨鹏,周仁贤.固体酸改性铈基复合氧化物的合成,表征及其对Cl-VOCs深度氧化性能的研究[D]. 杭州:浙江大学, 2016. Yang P, Zhou R X. Synthesis and characterization of CeO2 based mixed oxides modified by solid acid for deep oxidation of Cl-VOCs[D]. Hangzhu:Zhejiang University, 2016.
[2]
蒋贵仲,陈耀壮,张华西.催化燃烧催化剂的研究进展[J]. 广西轻工业, 2014,30(3):17-19. Jiang G Z, Chen Y Z, Zhang H X. Research progress in catalysts for catalytic combustion[J]. Light Industry Science and Technology, 2014,30(3):17-19.
[3]
Huang B B, Lei C, Wei C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014,71(1):118-138.
[4]
Rooke J C, Barakat T, Finol M F, et al. Influence of hierarchically porous niobium doped TiO2supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles[J]. Applied Catalysis B:Environmental, 2013,142-143(1):149-160.
[5]
Huang Q, Si H, Yu S K, et al. Fabrication of MnOx-CeO2/cordierite catalysts doped with FeOx and CuO for preferable catalytic oxidation of chlorobenzene[J]. Environmental Technology, 2018,31(1):1-13.
[6]
Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009,148(1/2):81-87.
[7]
Zhang C H, Wang C, Gil S, et al. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts[J]. Applied Catalysis B:Environmental, 2017,201:552-560.
[8]
Huang X, Peng Y, Liu X, et al. The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation[J]. Catalysis Communications, 2015,69:161-164.
[9]
冉乐,王幸宜.钌基催化剂上含氯挥发性有机化合物的低温催化燃烧[D]. 上海:华东理工大学, 2013. Ran L, Wang X Y. Low temperature catalytic combustion of chlorinated volatile organic compounds containing over ruthenium catalysts[D]. Shanghai:East China University of Science and Technology, 2013.
[10]
Gorlin Y, Chung C J, Nordlund D, et al. Mn3O4 supported on glassy carbon:an active non-precious metal catalyst for the oxygen reduction reaction[J]. Acs Catalysis, 2013,2(12):2687-2694.
[11]
Wang X Y, Kang Q, Li D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catalysis Communications, 2008,9(13):2158-2162.
[12]
Tsoncheva T, Issa G, Blasco T, et al. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15silica[J]. Applied Catalysis A:General, 2013,453(1):1-12.
[13]
刘晓刚,闫梦雪,许茹雯,等.La1-xRbxMnO3钙钛矿催化剂同时消除NO和碳烟的催化性能[J]. 燃料化学学报, 2019,47(9):1146-1152. Liu X G, Yan M X, Xu R W, et al. Catalytic performance of La1-xRbxMnO3 perovskite in the simultaneous removal of NO and soot[J]. Journal of Fuel Chemistry and Technology, 2019,47(9):1146-1152.
[14]
李景刚,姜妍彦,周靖.新型钙钛矿及尖晶石型光催化材料研究进展[J]. 玻璃与搪瓷, 2005,33(1):47-51. Li J G, Jiang Y Y, Zhou J. Advance on new perovskite-type and spinel0type photocatalysts[J]. Glass and Enamel, 2005,33(1):47-51.
[15]
郭丽红,丁全,田野,等.不同Sr引入方式对LaCoO3钙钛矿NOx储存-还原性能的影响[J]. 化学工业与工程, 2019,36(6):9-16. Guo L H, Ding Q, Tian Y, et al. Effect of Sr introduced by different preparation methods on LaCoO3 perovskite for NOx storage-reduction reaction[J]. Chemical Industry and Engineering, 2019,36(6):9-16.
[16]
史婷婷,钱胜涛,孔渝华.甲烷催化燃烧非贵金属氧化物催化剂的研究进展[J]. 化学与生物工程, 2015,32(8):11-13. Shi T T, Qian S T, Kong Y H. Research progress of non-noble metal oxides catalysts for catalytic combustion of methane[J]. Chemistry and Bioengineering, 2015,32(8):11-13.
[17]
何成欢,郭杨龙,郭耘,等.不同组成和结构LaMnO3钙钛矿负载Au催化剂的CO氧化活性[J]. 物理化学学报, 2019,35(4):422-430. He C H, Guo Y L, Guo Y, et al. Catalytic activity of Au nanoparticles supported on LaMnO3 perovskite with different composition and structure[J]. Acta Physico-Chimica Sinica, 2019,35(4):422-430.
[18]
Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B:Environmental, 2013,129:509-516.
[19]
Dinamarca R, Garcia X, Jimenez R, et al. Effect of A-site deficiency in LaMn0.9Co0.1O3 perovskites on their catalytic performance for soot combustion[J]. Materials Research Bulletin, 2016,81:134-141.
[20]
Machocki A, Ioannides T, Stasinska B, et al. Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane[J]. Journal of Catalysis, 2004,227(2):282-296.
[21]
贾瑞秀,周家顺.钙钛矿型复合氧化物的制备表征及其活性的探究[D]. 北京:中国石油大学, 2014. Jia R X, Zhou J S. Preparation and characterization of perovskite-type complex oxides and inquiry of its activity[D]. Bejing:China University of Petroleum, 2014.
[22]
晏耀宗,陈亚中.镧锰钙钛矿型催化剂的制备及其催化甲烷燃烧性能的研究[D]. 合肥:合肥工业大学, 2015. Yan Y Z, Chen Y Z. Preparation of Lanthanum manganese perovskite catalysts and their catalytic performance for methane combustion[D]. Hefei:Hefei University of Technology, 2015.
[23]
Tian W, Fan X Y, Yang H S, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene[J]. Journal of Hazardous Materials, 2010,177(1-3):887-891.
[24]
Ye J L, Wang Y, Liu Y. NiO-Ce0.5Zr0.5O2 catalysts prepared by citric acid method for steam reforming of ethanol[J]. Journal of Rare Earths, 2008,26(6):831-835.
[25]
Zhang C H, Wang C, Zhan W C, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B:Environmental, 2013,129:509-516.
[26]
Parvizi N, Rahemi Nader, Allahyari S, Tasbihi M. Plasma-catalytic degradation of BTX over ternary perovskite-type La1-x(Co, Zn, Mg, Ba)xMnO3 nanocatalysts[J]. Journal of Industrial and Engineering Chemistry, 2020,84:167-178.
[27]
Wang S F, Xue G, Liang J S, et al. Effect of tourmaline additive on the crystal growth and activity of LaCoO3 for catalytic combustion of methane[J]. Journal of Rare Earth, 2014,32(9):855-859.
[28]
Luo Y J, Zuo J C, Feng X S, et al. Good interaction between well dispersed Pt and LaCoO3 nanorods achieved rapid Co3+/Co2+ redox cycle for total propane oxidation[J]. Chemical Engineering Journal, 2019,3571:395-403.
[29]
Feng X B, Tian M J, He C, et al. Yolk-shell-like mesorporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B:Environmental, 2020,264:118493-118505.
[30]
Zhao W, Cheng J, Wang L N, et al. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS[J]. Applied Catalysis B:Environmental, 2012,127:246-254.
[31]
Wang X W, Jiang W Y, Yin R Q, et al. The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics[J]. Journal of Colloid and Interface Science, 2020,574:251-259.
[32]
Cai T, Huang H, Deng W, et al. Catalytic combustion of 1,2-Dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Applied Catalysis B:Environmental, 2015,166-167:393-405.