Hydrochemical and stable isotope characteristics of precipitation in Beishan Area
LI Jie-biao, SU Rui, ZHOU Zhi-chao, GUO Yong-hai
China National Nuclear Corporation, Key Laboratory on Geological Disposal of High-level Radioactive Waste, Beijing Research Institute of Uranium Geology, Beijing 100029, China
Abstract:For the purpose of reveal the chemical and isotope characteristics of atmospheric precipitation in Beishan Area, Gansu Province, 97 samples collected from 2012~2019 were analyzed. Correlation analysis, enrichment factors, backward trajectory analysis and other methods were used to in this paper. Based on these methods, the variation characteristics and influencing factors of stable isotope, the variation characteristics of main ion, different source contributions for ion concentration, and the sources of water vapor in precipitation were elaborated. The following knowledge and results were obtained. The slope and intercept of the local meteoric water line in Beishan area were higher than that in Zhangye basin. The stable isotope ratio of precipitation in this area was obviously affected by seasonal, temperature and elevation factors. In additional, the precipitation amount effect was not obvious at the annual scale. The deuterium excess (d-excess) in precipitation varied clearly, and the d-excess in rainy season is significantly smaller than that in dry season. The hydrochemical types of precipitation in Beishan area are mainly HCO3·SO4-Ca and HCO3-Ca. The ion concentration in precipitation varied obviously with seasonal, and the increase of precipitation amount has a slightly dilution effect on the ion concentration. Na+ is affected by both marine and soil sources. The majority of Ca2+, K+, HCO3-and some Mg2+ came from soil sources, and SO42- and NO3- mainly came from human activities. The sources of water vapor in winter and summer are nearly same, and the monsoon circulation source from the northwest is the most important. These values can be useful for the selection, safety assessment of the high-level radioactive waste repository and the construction of the final repository in the future. Furthermore, it also can enrich the hydrological cycle research in the arid area of Northwest China.
王驹.高水平放射性废物地质处置:关键科学问题和相关进展[J]. 科技导报, 2016,34(15):51-5. Wang J. Geological disposal of high level radioactive waste:key scientific issues and progress in China[J]. Science & Technology Review, 2016,34(15):51-5.
[2]
Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning, site selection,site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018,10(3):411-35.
[3]
International atomic energy agency, Monitoring of geological repositories for high level radioactive waste[R]. IAEA-TECDOC-1208, IAEA, Vienna, 2001.
[4]
Ma J, Zhang P, Zhu G, et al. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China[J]. Journal of Hydrology, 2012,436-437:92-101.
[5]
Mphepya J N, Pienaar J J, Galy-lacaux C, et al. Precipitation chemistry in semi-arid areas of Southern Africa:A case study of a rural and an industrial site[J]. Journal of Atmospheric Chemistry, 2004,47(1):1-24.
[6]
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964,16(4):436-68.
[7]
黄锦忠,谭红兵,王若安,等.我国西北地区多年降水的氢氧同位素分布特征研究[J]. 水文, 2015,35(1):33-39. Huang J Z, Tan H B, Wang R A, et al. Quantitative discrimination of climate change and human activities impacting on runoff in Xitiaoxi river basin[J]. Journal of China Hydrology, 2015,35(1):33-39.
[8]
Li Z J, Li Z X, Wang T T, et al. Composition of wet deposition in the central Qilian Mountains, China[J]. Environmental Earth Sciences, 2015,73(11):7315-28.
[9]
王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J]. 自然资源学报, 1999,(2):14-21. Wang G X, Cheng G D, Xu Z M. The utilizition of water resource and its influence on eco-environment in the northwest arid area of China[J]. Journal of Natural Resources, 1999,(2):14-21.
[10]
赵玮.疏勒河流域大气降水同位素特征及水汽来源研究[D]. 兰州:兰州大学, 2017. Zhao W. Study on the isotopes and moisture source in precipitation in the Shule river basin[D]. Lanzhou:Lanzhou University, 2017.
[11]
吴锦奎,杨淇越,丁永建,等.黑河流域大气降水稳定同位素变化及模拟[J]. 环境科学, 2011,32(7):1857-66. Wu J K, Yang Q Y, Ding Y J, et al. Variations and simulation of stable isotopes in precipitation in the Heihe River basin[J]. Environmental Science, 2011,32(7):1857-66.
[12]
冯芳,冯起,刘贤德,等.祁连山排露沟流域降水δ18O和δD特征及水汽来源[J]. 中国沙漠, 2017,37(5):997-1005. Feng F, Feng Q, Liu X D, et al. Characteristics of δ18O and δD in precipitation and moisture sources of Pailugou catchment in the Qilian mountains[J]. Journal of Desert Research, 2017,37(5):997-1005.
[13]
Wang S, Zhang M, Hughes C E, et al. Meteoric water lines in arid Central Asia using event-based and monthly data[J]. Journal of Hydrology, 2018,562:435-45.
[14]
李捷,庞忠和,古丽波斯坦·吐逊江,等.北疆大气降水水汽源识别及其对地下水补给的指示意义[J]. 科技导报, 2016,34(18):118-24. Li J, Pang Z H, Tursun G, et al. Identification of moisture sources in Junggar Basin and its implication for groundwater recharge[J]. Science & Technology Review, 2016,34(18):118-24.
[15]
冯芳,李忠勤,金爽,等.天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析[J]. 水科学进展, 2013,24(5):634-41. Feng F, Li Z Q, Jin S, et al. Characteristics of δ18O and δD in precipitation and its water vapor sources in the upper Urumqi River basin, Eastern Tianshan[J]. Advances in Water Science, 2013,24(5):634-41.
[16]
柳鉴容,宋献方,袁国富,等.西北地区大气降水δ18O的特征及水汽来源[J]. 地理学报, 2008,1:12-22. Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over northwest China and its water vapor sources[J]. Acta Geographica Sinica, 2008,1:12-22.
[17]
贾文雄,李宗省.祁连山东段降水的水化学特征及离子来源研究[J]. 环境科学, 2016,37(9):3322-32. Jia W X, Li Z S. Hydrochemical characteristics and sources of ions in precipitation at the east Qilian mountains[J]. Environmental Science, 2016,37(9):3322-32.
[18]
张强,俞亚勋,张杰.祁连山与河西内陆河流域绿洲的大气水循环特征研究[J]. 冰川冻土, 2008,30(6):907-13. Zhang Q, Yu Y X, Zhang J. Characteristics of water cycle in the Qilian mountains and the oases in Hexi inland river basins[J]. Journal of Glaciology and Geocryology, 2008,30(6):907-13.
[19]
郭永海,王海龙,董建楠,等.高放废物处置库芨芨槽预选场址深部地下水同位素研究[J]. 地质学报, 2013,87(9):1477-85. Guo Y H, Wang H L, Dong J N, et al. Isotopic study of deep groundwater in Jijicao preselected site for China's high level radioactive waste diposal repository[J]. Acta Geologica Sinica, 2013, 87(9):1477-85.
[20]
李杰彪.干旱地区大气降水入渗补给研究-以北山预选区新场向阳山预选地段为例[D]. 北京:核工业北京地质研究院, 2014. Li J B. Estimation of groundwater recharge in the arid area-taking Xinchang preselected site in Beishan area as an example[D]. Beijing:Beijing Research Institute of Uranium Geology, 2014.
[21]
GB/T 13580.2-1992大气降水样品的采集与保存[S]. GB/T 13580.2-1992 Collection and preservation of wet precipitation sample[S].
[22]
DZ/T 0064.1-1993地下水质检验方法[S]. DZ/T 0064.1-1993 Analysis method of groundwater quality[S].
[23]
DZ/T 0184.19-1997水中氢同位素的锌还原法测定[S]. DZ/T 0184.19-1997 Determination of hydrogen isotope in water by zinc reduction method[S].
[24]
DZ/T 0184.21-1997天然水中氧同位素的二氧化碳.水平衡法测定[S]. DZ/T 0184.21-1997 Carbon dioxide of oxygen isotope in water. Determination by water balance method[S].
[25]
陈宗宇,齐继祥,张兆吉,等.北方典型盆地同位素水文地质学方法应用[M]. 科学出版社, 2010:19-33. Chen Z Y, Qi J X, Zhang Z J, et al. Application of isotope hydrogeology method in typical northern basin, China[M]. China Science Publishing, 2010:19-33.
[26]
Okay C, Akkoyunlu B O, Tayanc M. Composition of wet deposition in Kaynarca, Turkey[J]. Environmental Pollution, 2002,118(3):401-10.
[27]
肖辉, 沈志来, 黄美元. 西太平洋热带海域降水化学特征[J].环境科学学报, 1993,02:143-149. Xiao H, Chen Z L, Huang M Y. Chemical characteristics of tropical western pacific precipitation[J]. Acta Scientiae Circumstantiae, 1993,02:143-149.
[28]
Keene W C, Pszenny A A P, Galloway J N, et al. Sea-salt corrections and interpretation of constituent ratios in marine precipitation[J]. Journal of Geophysical Research-Atmospheres, 1986,91(D6):6647-58.
[29]
Taylor S R. Abundance of chemical elements in the continental crust:a new table[J]. Geochimica Et Cosmochimica Acta, 1964,28(8):1273-85.
[30]
汪少勇,何晓波,吴锦奎,等.长江源区大气降水化学特征及离子来源[J]. 环境科学, 2019,40(10):4431-9. Wang S Y, He X B, Wu J K, et al. Chemical characteristics and ionic sources of precipitation in the source region of the Yangtze river[J]. Environmental Science, 2019,40(10):4431-9.
[31]
徐秀婷,贾文雄,朱国锋,等.乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比[J]. 环境科学, 2020,41(1):155-65. Xu X T, Jia W X, Zhu G F, et al. Stable isotope characteristics and vapor source of precipitation in the south and north slopes of Wushaoling mountain[J]. Environmental Science, 2020,41(1):155-65.
[32]
Pang Z, Kong Y, Li J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-7.
[33]
李永格,李宗省,冯起,等.托来河流域不同海拔降水稳定同位素的环境意义[J]. 环境科学, 2018,39(6):2661-72. Li Y G, Li Z S, Feng Q, et al. Environmental significance of the stable isotopes in precipitation at different altitude in the Tuolai river basin[J]. Environmental Science, 2018,39(6):2661-72.
[34]
李小飞,张明军,李亚举,等.西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012,33(3):711-9. Li X F, Zhang M J, Li Y J, et al. Characteristics of δ18O in precipitation and moisture transports over the arid region in northwest China[J]. Environmental Science, 2012,33(3):711-9.
[35]
Li Z, Qi F, Wang Q J, et al. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China[J]. Global and Planetary Change, 2016,146:140-51.
[36]
Wu J, Ding Y, Ye B, et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China[J]. Environmental Earth Sciences, 2010,61(6):1123-34.
[37]
Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001,188(1/2):253-68.
[38]
章新平,姚檀栋.我国降水中δ18O的分布特点[J]. 地理学报, 1998,4:70-8. Distribution features of δ18O in precipitation in China[J]. Acta Geographica Sinica, 1998,4:70-8.
[39]
Luis A-A, Klaus F, Kazimierz R. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research-Atmospheres, 1998,103(D22):28721-42.
[40]
李佳芳,石培基,朱国锋,等.河西走廊中部大气降水δ18O变化特征及水汽输送[J]. 环境科学学报, 2015,35(4):947-55. Li J F, Shi P J, Zhu G F, et al. Characteristics of δ18O in precipitation and moisture transports in the central Hexi Corridor[J]. Acta Scientiae Circumstantiae, 2015,35(4):947-55.
[41]
Zhao W, Ma J, Gu C, et al. Distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China:an implication for water cycle and groundwater recharge[J]. Journal of Arid Land, 2016,8(6):973-85.
[42]
Wang X, Li Z, Tayier R, et al. Characteristics of atmospheric precipitation isotopes and isotopic evidence for the moisture origin in Yushugou River basin, Eastern Tianshan Mountains, China[J]. Quaternary International, 2015,380-381:106-15.
[43]
Mayr C, Luecke A, Stichler W, et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H)[J]. Journal of Hydrology, 2007,334(1/2):53-63.