Hydrochemical characteristics of the mountain runoff in Tarim River Basin, China
WANG Jian1, HAN Hai-dong2, XU Jun-li1, LI Yong-shan1
1. School of Urban and Planning, Yancheng Teachers University, Yancheng 224007, China; 2. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract:On the basis of regional geology, the reasons for the formation of hydrochemical components of the Mountain Runoff were analyzed, and the source of solutes and their controlling factors were discussed in Tarim River Basin, China. The results showed that the mountainous runoff was mainly composed of carbonated dissolving water of silicate rock with the dominant ion type of calcium bicarbonate (Ca-HCO3) and the secondary type of calcium/magnesium sulfate (Ca/Mg-SO4) mixture. The weighted averages of the total dissolved solids (TDS) and the total number of ions in the mountainous runoffs in the Kunlun Mountains and Pamirs Plateau were 424.02 and 356.20mg/L, respectively, which were much higher than the values of 268.43 and 220.04mg/L in the Tianshan Mountains, respectively. The differences were mainly due to that a large number of magmatic rocks spread over the Tianshan Mountains, which reduced the erosive intensity of regional hydrochemistry. With the combination of the methods of Gibbs diagram and factor analysis, it was determined that the water quality of mountain runoffs was mainly controlled by silicate weathering. The water system in the Kunlun Mountain and Pamirs Plateau was not only accompanied by evaporative salt rock weathering but also by carbonate rock weathering similar to that in the Aksu River system in Tianshan Mountains. During the weathering process, the H+ produced by sulfide oxidation inhibited the carbonation weathering, which lowered the atmospheric CO2 consumption to a certain extent, especially in the Dina, Kara Yuergun and Kashgar River basins rich in coal seams and copper mines. With the exception of fluorine (F-) and nitrate (NO3-), the concentrations of the other ions and the total ions all presented strong correlation with the rate of glacier coverage rate and the ratio of the glacial meltwater to surface runoff in the Tarim River basin. The fitted exponential equation established between the concentration of the total ion and the rate of glacier coverage conformed to the characteristics of mountain water quality in the arid area of northwest China. Nevertheless, under the interference of natural and anthropogenic processes, there existed a certain difference between the equations fitted in the Tarim River basin and on a global scale.
王建, 韩海东, 许君利, 李永山. 塔里木河流域出山径流水化学特征研究[J]. 中国环境科学, 2021, 41(4): 1576-1587.
WANG Jian, HAN Hai-dong, XU Jun-li, LI Yong-shan. Hydrochemical characteristics of the mountain runoff in Tarim River Basin, China. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(4): 1576-1587.
Hinderer M, Kastowski M, Kamelger A, et al. River loads and modern denudation of the Alps-A review[J]. Earth-Science Reviews, 2013, 118:11-44.
[2]
Singh V B, Ramanathan A L. Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India:solute acquisition processes, dissolved load and chemical weathering rates[J]. Environmental Earth Science, 2017,76(5):223.
[3]
Romero-Mujalli G, Hartmann J, Borker J. Temperature and CO2 dependency of global carbonate weathering fluxes-Implications for future carbonate weathering research[J]. Chemical Geology, 2019,527:118874.
[4]
王利杰,曾辰,王冠星,等.西藏山南地区沉错湖泊与径流水化学特征及主控因素初探[J]. 干旱区地理, 2017,40(4):737-745. Wang L J, Zeng C, Wang G X, et al. Chemical characteristics and impact factors of the Drem-tso Lake and supplying runoff in the Southern Tibet[J]. Arid Land Geography, 2017,40(4):737-745.
[5]
Ben-Aazza S, Hadfi A, Mohareb S, et al. Geochemical characterization and thermodynamic study of water scaling phenomenon at Tiznit region in Southern Morocco[J]. Groundwater for Sustainable Development, 2020,11:100379.
[6]
朱国锋,潘汉雄,张昱,等.石羊河流域多水体酸根离子特征及影响因素[J]. 中国环境科学, 2018,38(5):1886-1892. Zhu G F, Pan H X, Zhang Y, et al. Hydrochemical characteristics and control factors of acid anion in Shiyang River Basin[J]. China Environmental Science, 2018,38(5):1886-1892.
[7]
李红德,毛炜峄,魏顺芝,等.渭干河流域上游地表水水质变化分析[J]. 干旱区研究, 2006,23(3):393-398. Li H D, Mao W Y, Wei S Z, et al. Analysis on surface water quality in the upper reaches of the Ogan River Basin[J]. Arid Zone Research, 2006,23(3):393-398.
[8]
Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159:3-30.
[9]
Wolff-Boenisch D, Gabet E, Burbank D W, et al. Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season[J]. Geochimica et Cosmochimica Acta, 2009,73:3148-3172.
[10]
李汉林,何清,刘新春,等.帕米尔高原东部PM10输送路径及潜在源分析[J]. 中国环境科学, 2020,40(11):4660-4668. Li H L, He Q, Liu X C, et al. Analysis of transport pathways and potential source regions of PM10 in the eastern Pamirs[J]. China Environmental Science, 2020,40(11):4660-4668.
[11]
高鑫,叶柏生,张世强,等.1961~2006年塔里木河流域冰川融水变化及其对径流的影响[J]. 中国科学:地球科学, 2010,40(5):654-665. Gao X, Ye B S, Zhang S Q, et al. Glacier runoff variation and its influence on river runoff during 1961~2006 in the Tarim River Basin, China[J]. Science China (Earth Science), 2010,40(5):654-665.
[12]
赵求东,叶柏生,丁永建,等.典型寒区流域水文过程模拟及分析[J]. 冰川冻土, 2011,33(3):595-605. Zhao Q D, Ye B S, Ding Y J, et al. Hydrological process of a typical catchment in cold region:simulation and analysis[J]. Journal of Glaciology and Geocryology, 2011,33(3):595-605.
[13]
陈亚宁,崔旺诚,李卫红,等.塔里木河的水资源利用和生态保护[J]. 地理学报, 2003,58(2):215-222. Chen Y N, Cui W C, Li W H, et al. Utilization of water resources and ecological protection in the Tarim river[J]. Acta Geographica Sinica, 2003,58(2):215-222.
[14]
Wu H W, Wu J L, Li J, et al. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs[J]. Catena, 2020,193:104639.
[15]
张鑫,张妍,毕直磊,等.中国地表水硝酸盐分布及其来源分析[J]. 环境科学, 2020,41(4):1594-1606. Zhang X, Zhang Y, Bi Z L, et al. Distribution and source analysis of nitrate in surface waters of China[J]. Environmental Science, 2020, 41(4):1594-1606.
[16]
满苏尔•沙比提,阿吉尼沙•托呼提.叶尔羌河流域水资源及其水文特征分析[J]. 新疆师范大学学报(自然科学版), 2005,24(1):74-78. Sabit M, Tohti A. An analysis of water resources and it's hydrological charachteristics of Yarkend river valley[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2005,24(1):74-78.
[17]
Wang J, Han H D, Zhao Q D, et al. Hydrochemical Denudation and transient carbon dioxide drawdown in the highly glacierized, shrinking Koxkar basin, China[J]. Advances in Meteorology, 2016:135185.
[18]
熊黑钢,于堃.塔里木盆地南缘古绿洲分布与河流、冰川的关系[J]. 干旱区地理, 2008,31(1):17-22. Xiong H G, Yu K. Relationship between the ancient oasis changes and rivers, glaciers in the Southern Tarim Basin[J]. Arid Land Geography, 2008,31(1):17-22.
[19]
段建军,曹晓莉,沈永平,等.天山南坡渭干河流域地表水资源量及其变化趋势[J]. 冰川冻土, 2010,32(6):1211-1219. Duan J J, Cao X L, Shen Y P, et al. Surface water resources and its trends in Weigan river basin on the South slope of Tianshan, China during 1956-2007[J]. Journal of Glaciology and Geocryology, 2010, 32(6):1211-1219.
[20]
谢昌卫,丁永建,刘时银,等.托木尔峰南坡冰川水文特征及其对径流的影响分析[J]. 干旱区地理, 2004,27(4):570-575. Xie C W, Ding Y J, Liu S Y, et al. Analysis on the glacial hydrological features of the glaciers on the South slope of Mt. Tuomuer and the effects on runoff[J]. Arid Land Geography, 2004,27(4):570-575.
[21]
赵爱芳,张明军,李忠勤,等.托木尔峰青冰滩72号冰川径流水化学特征初步研究[J]. 环境科学, 2012,33(5):1484-1490. Zhao A F, Zhang M J, Li Z Q, et al. Hydrochemical characteristics in the glacier No.72 of Qingbingtan, Tomur Peak[J]. Environmental Science, 2012,33(5):1484-1490.
[22]
怀保娟,李忠勤,孙美平,等.近40a天山台兰河流域冰川资源变化分析[J]. 地理科学, 2014,34(2):229-236. Huai B J, Li Z Q, Sun M P, et al. Glaciers change in the Tailan river watershed in the last 40years[J]. Scientia Geographica Sinica, 2014,34(2):229-236.
[23]
杨永康,梁建辉.开都河流域径流变化特征与突变分析[J]. 水利科技与经济, 2015,21(10):84-86. Yang Y K, Liang J H. Analysis on the variation characteristics and abrupt change of runoff in the Kaidu river basin[J]. Water Conservancy Science and Technology and Economy, 2015,21(10):84-86.
[24]
朱文静.迪那河流域水文分析计算[J]. 陕西水利(科技专刊), 2016:238-240. Zhu W J. Hydrological analysis and calculation of Dina river basin[J]. Shanxi Water Resources (Science and Technology Special Issue), 2016:238-240.
[25]
周宰根,谢自楚,韩建康.玉龙喀什河和喀拉喀什河出山径流变化及其影响因素分析[J]. 干旱区资源与环境, 2009,23(6):95-99. Zhou Z G, Xie Z C, Han J K. Analysis on runoff variation and influencing factors in river Yurunkax and Karakax[J]. Journal of Arid Land Resources and Environment, 2009,23(6):95-99.
[26]
莫合塔尔•尼扎木丁,阿不都艾则孜•尼扎木丁.克里雅河径流与降水变化分析[J]. 水文水资源, 2011,3:51-52. Nizamudin M, Nizamudin A. Analysis of runoff and precipitation change of Keliya river[J]. Hydrology and Water Resources, 2011,3:51-52.
[27]
许君利,刘时银,张世强,等.塔里木盆地南缘喀拉米兰河-克里雅河流内流区近30a来的冰川变化研究[J]. 冰川冻土, 2006,28(3):312-318. Xu J L, Liu S Y, Zh Ang S Q, et al. Glaciers fluctuations in the Karamilan-Keriya river watershed in the past 30years[J]. Journal of Glaciology and Geocryology, 2006,28(3):312-318.
[28]
董克鹏.新疆和田策勒河极端旱涝成因分析[J]. 能源与节能, 2017, 9:113-115. Dong K P. Analysis of causes of extreme drought and flood formation of Qira river in Hotan of Xinjiang[J]. Energy and Energy Conservation. 2017,9:113-115.
[29]
赵华标,姚檀栋,徐柏青.慕士塔格卡尔塔马克冰川作用区水文与水化学特征[J]. 冰川冻土, 2006,28(2):269-275. Zhao H B, Yao T D, Xu B Q. Hydrological and hydrochemical features of Kartamak glacier area in Muztag Ata[J]. Journal of Glaciology and Geocryology, 2006,28(2):269-275.
[30]
李燕,李红斌,王连有.喀喇昆仑山盖孜河水文水资源特性分析[J]. 干旱区研究, 2003,20(4):272-275. Li Y, Li H B, Wang L Y. Analysis on the hydrology and water resources of Gez river in Karakorum Mountain[J]. Arid Zone Research, 2003,20(4):272-275.
[31]
毛炜峄,孙本国,王铁,等.近50年来喀什噶尔河流域气温、降水及径流的变化趋势[J]. 干旱区研究, 2006,23(4):531-538. Mao W Y, S Un B G, Wang T, et al. Change trends of temperature, precipitation and runoff volume in the Kaxgar river basin since recent 50years[J]. Arid Zone Research, 2006,23(4):531-538.
[32]
袁勇.基于改进多元模糊均生函数的克孜河年径流预测[J]. 水资源开发与管理, 2017,8:71-73. Yuan Y. Annual runoff forecast of Kazi river based on improved multiple fuzzy homogenetic functions[J]. Water Resources Development and Management. 2017,8:71-73.
[33]
李革新.依格孜牙河流域水文特性分析[J]. 水利科技与经济, 2014,20(12):77-80. Li G X. Analysis of hydrological characteristics of Yigeziya river basin[J]. Water Conservancy Science and Technology and Economy, 2014,20(12):77-80.
[34]
邓晓雅,杨志峰,龙爱华.基于流域水资源合理配置的塔里木河流域生态调度研究[J]. 冰川冻土, 2013,35(6):1600-1609. Deng X Y, Yang Z F, Long A H. Ecological operation in the Tarim river basin based on rational allocation of water resources[J]. Journal of Glaciology and Geocryology, 2013,35(6):1600-1609.
[35]
中国科学院登山科学考察队.天山托木尔峰地区的地质与古生物[M]. 乌鲁木齐:新疆人民出版社, 1985. Mountaineering expedition team of the Chinese Academy of Sciences. Geology and paleontology of Tuomuerfeng area in Tianshan Mountains[M]. Urumqi:Xinjiang People's Publishing House, 1985.
[36]
潘裕生.西昆仑山构造特征与演化[J]. 地质科学, 1990,3:224-232. Pan Y S. Tectonic features and evolution of the Western Kunlun Mountain region[J]. Scientia Geologica Sinica, 1990,3:224-232.
[37]
Bisht H, Arya P C, Kumar K. Hydrochemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya, India[J]. Environmental Earth Sciences, 2018,77:598.
[38]
Hosein R, Steinmann P, Adatte T, et al. Carbonate and silicate weathering in two presently glaciated, crystalline catchments in the Swiss Alps[J]. Geochimica et Cosmochimica Acta, 2004,68(5):1021-1034.
[39]
Niu H W, Kang S C, Wang H L, et al. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the Southeastern Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2018,18(9):6441-6460.
[40]
Yde J C, Knudsen N T, Nielsen O B, et al. Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuannersuit Kuussuat, Disko Island, West Greenland[J]. Journal of Hydrology, 2005,300:172-187.
[41]
曾江海.我国干旱地区盐土类型及盐分聚积的一些特点[J]. 土壤通报, 1963,1(6):35-42. Zeng J H. Some characteristics of saline soil types and salt accumulation in arid regions, China[J]. Chinese Journal of Soil Science, 1963,1(6):35-42.
[42]
Dedzo M G, Tsozue D, Mimba M E, et al. Importance of rocks and their weathering products on groundwater quality in Central-East Cameroon[J]. Hydrology, 2017,4(2):23.
[43]
Hindshaw R, Tipper E, Reynolds B, et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland)[J]. Chemical Geology, 2011,285:215-230.
[44]
李荣社,计文化,杨永成.昆仑山及邻区地质[M]. 北京:地质出版社, 2008. Li R S, Ji W H, Yang Y C. Geology of Kunlun Mountains and adjacent areas[M]. Beijing:Geological Publishing House, 2008.
[45]
Hodson A, Tranter M, Vatne G. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins:An Arctic perspective[J]. Earth Surface Processes and Landforms, 2000, 25:1447-1473.
[46]
Krawczyk W, Bartoszewski S A. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002[J]. Journal of Hydrology, 2008,362:206-219.
[47]
Krawczyk W E, Lefauconnier B, Pettersson L E. Chemical denudation rates in the Bayelva catchment, Svalbard, in the Fall of 2000[J]. Physics and Chemistry of the Earth, 2003,28:1257-1271.
[48]
Szpikowski J, Szpikowska G, Zwoliński Z, et al. Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen)[J]. Geomorphology, 2014,218:52-62.
[49]
Sharp M, Tranter M, Brown G H, et al. Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment[J]. Geology, 1995,23:61-64.
[50]
Hodson A, Porter P, Lowe A, et al. Chemical denudation and silicate weathering in Himalayan glacier basins:Batura Glacier,Pakistan[J]. Journal of Hydrology, 2002,262:193-208.
[51]
Feng F, Li Z Q, Jin S, et al. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No.1, Eastern Tianshan, Northwest China[J]. Journal of Mountain Science, 2012,9:472-482.
[52]
冯芳,冯起,李忠勤,等.天山乌鲁木齐河流域山区水化学特征分析[J]. 自然资源学报, 2014,29(1):143-155. Feng F, Feng Q, Li Z Q, et al. Analysis on the hydrochemical characteristics in the upper reaches of Urumqi River basin, eastern Tianshan[J]. Journal of Natural Resources, 2014,29(1):143-155.
[53]
武小波,李全莲,宋高举,等.祁连山七一冰川融水化学组成及演化特征[J]. 环境科学, 2008,29(3):613-618. Wu X B, Li Q L, Song G J, et al. Hydrochemical characteristics and evolution of runoff at Qiyi Glacier, Qilian Mts[J]. Environmental Science, 2008,29(3):613-618.
[54]
蒲焘,何元庆,朱国锋,等.丽江盆地地表-地下水的水化学特征及其控制因素[J]. 环境科学, 2012,33(1):48-54. Pu T, He Y Q, Zhu G F, et al. Geochemistry of surface and ground water in the Lijang basin, Northwest Yunnan[J]. Environmental Science, 2012,33(1):48-54.
[55]
王建,丁永建,许君利,等.西天山科其喀尔冰川消融径流的水化学分析[J]. 环境科学, 2006,27(7):1305-1311. Wang J, Ding Y J, Xu J L, et al. Hydrochemical characteristic analysis of melting water flow in Keqikaer Glacier, Tianshan (West) Mountains[J]. Environmental Science, 2006,27(7):1305-1311.