Screening of algal based on temperature and nutrient fluctuation tolerance and its community nitrogen and phosphorus removal rate
ZENG Jie1,2, LIU Yu-ping1,2, FENG Jie1,2, ZHANG Qi-qi1,2, QIAN Lei1,2,3, LIU Jing1,2,4
1. State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution(SEKL-SW), Chengdu University of Technology, Chengdu 610059, China; 2. College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China; 3. Sichuan Academy of Environmental Sciences, Chengdu 610041, China; 4. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
Abstract:Aiming at screening out the dominant algae species which can adapt to different temperatures and nutritional conditions, exploring the sewage treatment effect of microalgae community formed by their mixed culture, under the laboratory conditions, Chlorella sp., Scendesmus obliquus, Nitzschia sp., Chlamydomonas reinhardti and Cyclotella sp. were selected, at three different temperatures of 10, 20 and 30℃ and three different nutritional conditions, with TN and TP concentrations of 8.40 and 1.97 mg/L, 12.97 and 5.70mg/L, 60.22 mg/L and 18.19mg/L respectively. Three dominant algal species featuring good tolerance as well as removal of nitrogen and phosphorus at different temperatures and nutrients were screened. The dominant algal species were further selected for algal community collocation. Based on the removal effect and stability of nitrogen and phosphorus pollutants in artificial waste-water by different algal communities, the dominant algal communities were determined. The results showed that at three different temperatures, the growth condition of Cyclotella sp. and Nitzschia sp. was stable and the removal rate of nitrogen and phosphorus was generally over 80%; In three different nutritional conditions, only the growth rate and removal rate of nitrogen and phosphorus of Scendesmus obliquus was higher. To sum up, the environmental tolerance and removal rate of Scendesmus obliquus, Nitzschia sp. and Cyclotella sp. were better. The above three algae were combined with each other. The removal rate of TN and TP was about 80% and 90% by the community combination of Nitzschia sp. and Cyclotella sp., there was no abnormal changes; The growth of the communities of Scendesmus obliquus, Nitzschia sp. And Cyclotella sp.was stable.
曾劼, 刘雨萍, 冯杰, 张琪琪, 钱磊, 刘静. 温度与营养盐耐受藻种筛选及其群落氮磷去除研究[J]. 中国环境科学, 2021, 41(4): 1564-1575.
ZENG Jie, LIU Yu-ping, FENG Jie, ZHANG Qi-qi, QIAN Lei, LIU Jing. Screening of algal based on temperature and nutrient fluctuation tolerance and its community nitrogen and phosphorus removal rate. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(4): 1564-1575.
张际标,张鹏,戴培东,等.海南岛近岸海域溶解无机磷时空分布及富营养化[J]. 中国环境科学, 2019,39(6):2541-2548. Zhang J B, Zhang P, Dai P D, et al. Spatiotemporal distributions of DIP and the eutrophication in Hainan Island adjacent coastal water[J]. China Environmental Science, 2019,39(6):2541-2548.
[2]
郭莉娜.藻类生物膜优选及脱氮除磷实验研究[D]. 南宁:广西大学, 2014. Guo W Y. Experimental research on optization of algal biofilm and removal of nitrogen an phosphorus[D]. Nanning:Guangxi University, 2014.
[3]
Mahapatra D M, Chanakya H N, Ramachandra T V. Treatment efficacy of algae-based sewage treatment plants[J]. Environmental Monitoring & Assessment, 2013,185(9):7145-7164.
[4]
刘晓晨,李振轮,谢德体.藻类在水体脱氮除磷中的作用及其资源化利用[J]. 环境科学与技术, 2014,37(3):18-24. Liu X C, Li Z L, Xie D T. Functions and resource utilizing of algae removing nitrogen and phosphorus from water[J]. Environmental Science & Technology, 2014,37(3):18-24.
[5]
潘晓洁,朱爱民,郑志伟,等.汉江中下游春季浮游植物群落结构特征及其影响因素[J]. 生态学杂志, 2014,33(1):33-40. Pan X J, Zhu A M, Zhen Z W, et al. Structural characteristics and influencing factors of phytoplankton community in the middle and lower reaches of Hanjiang River during spring season[J]. Chinese Journal of Ecology, 2014,33(1):33-40.
[6]
朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J]. 生态环境, 2008,17(1):6-11. Zhu W, Wan L, Zhao L F. Interspecies competition rule of algae under different temperature and nutrient concentration condition[J]. Ecology and Environment, 2008,17(1):6-11.
[7]
陈永灿,俞茜,朱德军,等.河流中浮游藻类生长的可能影响因素研究进展与展望[J]. 水力发电学报, 2014,33(4):186-195. Chen Y C, Yu Q, Zhu D J, et al. Possible influencing factors on phytoplankton growth and decay in rivers:review and perspective[J]. Journal of Hydroelectric Engineering, 2014,33(4):186-195.
[8]
Chen Y. Long-term dynamics of phytoplankton assemblages:Microcystis-domination in Lake Taihu, a large shallow lake in China[J]. Journal of Plankton Research, 2003,25(4):445-453.
[9]
晁建颖,颜润润,张毅敏.不同温度下铜绿微囊藻和斜生栅藻的最佳生长率及竞争作用[J]. 生态与农村环境学报, 2011,27(2):53-57. Chao J Y, Yan R R, Zhang Y M. Optimal growth of and competition between Microcystis aeruginosa and Scenedesmus obliquus related to temperature[J]. Journal of Ecology and Rural Environment, 2011, 27(2):53-57.
[10]
王英英.不同氮磷质量浓度对太浦河四种优势藻类生长影响的研究[D]. 上海:上海师范大学, 2016. Wang Y Y. Effects of different concentrations of nitrogen and phosphorus on the growth of four dominant algae in Taipu River[D]. Shanghai:Shanghai Normal University, 2016.
[11]
Kazamia E, Riseley A S, Howe C J, et al. An Engineered Community Approach for Industrial Cultivation of Microalgae[J]. Industrial Biotechnology, 2014,10(3):184-190.
[12]
谭啸,孔繁翔,曹焕生,等.利用流式细胞仪研究温度对两种藻竞争的影响[J]. 湖泊科学, 2006,18(4):419-424. Tan X, Kong F X, Cao H S, et al. Influences of temperatures on the competition between two species of algae assayed by flow cytometry[J]. Journal of Lake Sciences, 2006,18(4):419-424.
[13]
蔡元妃.藻类膜藻种优选及其脱氮除磷实验研究[D]. 南宁:广西大学, 2013. Cai Y F. Study on algae and the removal of nitrogen and phosphorsus by algae biofilm[D]. Nanning:Guangxi University, 2013.
[14]
国家环保总局.水和废水监测分析方法[M]. 第4版.北京:中国环境科学出版社, 2002:243-257. Ministry of Environmental Protection of the People's Republic of China. Methods for monitoring and analysis of water and wastewater[M]. Version 4.BeiJing:China Environmental Science Press, 2002:243-257.
[15]
蔡卓平,段舜山,朱红惠.光密度法与计数法测定3种能源微藻细胞生长的相关性及其验证[J]. 南方农业学报, 2012,43(10):1480-1484. Cai Z P, Duan S S, Zhu H H. Optical density method and cell count method for determining the growth of three energy microalgae and their correlation and verification[J]. Journal of Southern Agriculture, 2012,43(10):1480-1484.
[16]
王晓晨,兰永辉,张小平,等.溶剂提取-荧光光谱法测定微藻油脂[J]. 化工进展, 2013,32(1):114-117. Wang X C, Lan Y H, Zhang X P, et al. Microalgae lipids determination by solvent extraction with fluorescence spectrometry[J]. Chemical Industry and Engineering Progress, 2013,32(1):114-117.
[17]
吴攀,邓建明,秦伯强,等.水温和营养盐增加对太湖冬、春季节藻类生长的影[J]. 环境科学研究, 2013,26(10):1064-1071. Wu P, Deng J M, Qing B Q, et al. Effects of enhanced water temperature and nutrient concentration on algal growth in winter and spring season in Lake Taihu, China[J]. Research of Environmental Sciences, 2013,26(10):1064-1071.
[18]
Basílico G, de Cabo L, Magdaleno A, et al. Poultry effluent bio-treatment with Spirodela intermedia and Periphyton in mesocosms with water recirculation[J]. Water Air & Soil Pollution, 2016,227(6):1-11.
[19]
刘春光,金相灿,邱金泉,等.光照与磷的交互作用对两种淡水藻类生长的影响[J]. 中国环境科学, 2005,25(1):33-37. Liu C G, Jin X C, Qiu J Q, et al. Influence of interaction of light and phosphorus on growth of two species of algae in freshwaters[J]. China Environmental Science, 2005,25(1):33-37.
[20]
朱亮.不同磷浓度、氮源和曝气方式对淡水藻类生长的影响[D]. 重庆:重庆大学, 2007. Zhu L. Effects of different phosphorus concentrations, nitrogen sources and aeration methods on the growth of freshwater algae[D]. Chongqing:Chongqing University.
[21]
王菁,陈家长,孟顺龙.环境因素对藻类生长竞争的影响[J]. 中国农学通报, 2013,29(17):52-56. Wang J, Chen J Z, Meng S L. The effects of environmental factors on the growth and competition of algae[J]. Chinese Agricultural Science Bulletin, 2013,29(17):52-56.
[22]
田永强,俞超超,王磊,等.福建九龙江北溪浮游植物群落分布特征及其影响因子[J]. 应用生态学报, 2012,23(9):2559-2565. Tian Y Q, Yu C C, Wang L, et al. Dynamic changes of phytoplankton's community structure in Beixi of Jiulongjiang River, Fujian Province of East China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2012,23(9):2559-2565.
[23]
唐旭光,王淑莹,张婧倩.温度变化对生物除磷系统的影响[J]. 化工学报, 2011,62(4):1103-1109. Tang X G, Wang S Y, Zhang J Q. Impact of temperature on EBPR system[J]. Journal of Chemical Industry and Engineering, 2011,62(4):1103-1109.
[24]
You S J, Hsu C L, Chuang S H, et al. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems[J]. Water Research, 2003,37(10):2281-2290.
[25]
Abdelaziz A E M, Leite G B, Belhaj M A, et al. Screening microalgae native to Quebec for wastewater treatment and biodiesel production[J]. Bioresource Technology, 2014,157:140-148.
[26]
龙天渝,周鹏瑞,吴磊.环境因子对香溪河春季藻类生长影响的模拟实验[J]. 中国环境科学, 2011,31(2):327-331. Long T Y, Zhou P R, Wu L. The simulating experiment for the impacts of environmental factors on Spring algae growth in Xiangxi River[J]. China Environmental Science, 2011,31(2):327-331.
[27]
余秋阳.人工藻类系统对污水中N、P及有机物去除试验研究[D]. 重庆:重庆大学, 2014. Yu Q Y. Research on removal of N, P and organics in artificial algal system[D]. Chongqing:Chongqing University, 2014.
[28]
黄翔峰,闻岳,何少林,等.高效藻类塘对农村生活污水的处理及氮的迁移转化[J]. 环境科学, 2008,(8):2219-2226. Huang X F, Wen Y, He S L, et al. Migration and transformation of nitrogen in a HRAP treating Domestic wastewater in rural area[J]. Environmental Science, 2008,(8):2219-2226.
[29]
沈根祥,朱荫湄,雷萍.藻类净化含氮磷有机污水及其利用研究进展[J]. 农业环境保护, 2001,(5):382-384. Shen G X, Zhu Y M, Lei P. Progresses on utilization of algae in purification of sewage containing N and P[J]. Agro-environmental Protection, 2001,(5):382-384.
[30]
Jebali A, Acién F G, Gómez C, et al. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production[J]. Bioresource Technology, 2015,198:424-430.
[31]
谭啸,孔繁翔,于洋,等.升温过程对藻类复苏和群落演替的影响[J]. 中国环境科学, 2009,29(6):578-582. Tan X, Kong F X, Yu Y, et al. Effects of enhanced temperature on algae recruitment and phytoplankton community succession[J]. China Environmental Science, 2009,29(6):578-582.
[32]
Zeng X, Guo X, Su G, et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production[J]. Renewable and Sustainable Energy Reviews, 2015,42:1385-1392.
[33]
Martínez M E, Jiménez J M, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus[J]. Bioresource Technology, 1999,67(3):233-240.
[34]
刘林林,黄旭雄,危立坤,等.15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析[J]. 环境科学学报, 2014,34(8):1986-1994. Liu L L, Huang X X, Wei L K, et al. Removal of nitrogen and phosphorus by 15strains of microalgae and their nutritional values in piggery sewage[J]. Acta Scientiae Circumstantiae, 2014,34(8):1986-1994.
[35]
Wu Y H, Hu H Y, Yu Y, et al. Microalgal species for sustainable biomass/lipid production using wastewater as resource:A review[J]. Renewable & Sustainable Energy Reviews, 2014,33:675-688.
[36]
李川,薛建辉,赵蓉,等.4种固定化藻类对污水中氮的净化能力研究[J]. 环境工程学报, 2009,3(12):2185-2188. Li C, Xue J H, Zhao R, et al. Nitrogen removal from wastewater by four species of immobilized algae[J]. Chinese Journal of Environmental Engineering, 2009,3(12):2185-2188.
[37]
李哲,郭劲松,方芳,等.三峡小江回水区蓝藻季节变化及其与主要环境因素的相互关系[J]. 环境科学, 2010,31(2):301-309. Li Z, Guo J S, Fang F, et al. Seasonal variation of Cyanobacteria and its potential relationship with key environmental factors in Xiaojiang backwater area Three Gorges Reservoir[J]. Environmental Science, 2010,31(2):301-309.
[38]
于宇,宋金明,李学刚,等.沉积物生源要素对水体生态环境变化的指示意义[J]. 生态学报, 2012,32(5):1623-1632. Yu Y, Song J M, Li X G, et al. Indicative significance of biogenic elements to eco-environmental changes in waters[J]. Acta Ecologica Sinica, 2012,32(5):1623-1632.
[39]
杨坤,李静,赵秀侠,等.栅藻和小球藻在4种养殖废水中的生长及净化效果对比研究[J]. 环境工程学报, 2017,11(7):4411-4418. Yang K, Li J, Zhao X X, et al. A comparative study on growth and purification efficiency of Scenedesmus obliquus and Chlorella vulgaris in four kinds of breeding wastewater[J]. Chinese Journal of Environmental Engineering, 2017,11(7):4411-4418.
[40]
李哲,方芳,郭劲松,等.三峡小江(澎溪河)藻类功能分组及其季节演替特点[J]. 环境科学, 2011,32(2):392-400. Li Z, Fang F, Guo J S, et al. Seasonal succession of phytoplankton function groups in the Xiaojiang (Pengxi) river backwater area, Three Gorges Reservoir[J]. Environmental Science, 2011,32(2):392-400.