Distribution characteristics and pollution assessment of 238U and 226Ra in soils surrounding a uranium mining area
JIANG Wen-bo1, GAO Bai1,2, ZHANG Hai-yang1, LIN Cong-ye1, WANG Juan1, Yi Ling1
1. School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China; 2. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
Abstract:To determine the pollution intensity and range of the soil pollution source surrounding a uranium mining area, and quantify the pollution sources that need to be treated, we carried out a field investigation and statistical analysis of 238U and 226Ra activities in the soil layers of 0.0~0.2,0.2~0.4,0.4~0.6,0.6~0.8,0.8~1.0m around the uranium mine, and thereby determined the spatial distribution of radionuclide contamination and its effectiveness, as well as using 226Ra/238U to reflect weathering degree. The results demonstrated that the highest concentrations of 238U and 226Ra were 813.44~5059.20 and 737~4536Bq/kg respectively at 0.0~0.2m soil depth. The concentrations of 226Ra and 238U decreased with the increase of depth, and the concentrations of 238U and 226Ra at the depth of 0.6~1.0m were still higher than the soil decontamination standard concentration (370Bq/kg) regulated by the United States Nuclear Regulatory Commission (NRC) on the residual radionuclides in the decommissioning of uranium mines and Hydrometallurgical facilities. Therefore, for the soil treatment in the study area, the needed treatment soil depth should not be less than 1m. The results of pollution assessment showed that in the study area, the soil area with severe to extremely severe pollution and strong ecological risk hazards accounted for the highest proportion; with the increase of the distance from uranium mining area, the pollution degree of 226Ra and 238U decreased, and the potential ecological risk decreased as well.
蒋文波, 高柏, 张海阳, 林聪业, 王娟, 易玲. 某铀矿区周边土壤238U和226Ra分布特征及污染评价[J]. 中国环境科学, 2021, 41(4): 1799-1805.
JIANG Wen-bo, GAO Bai, ZHANG Hai-yang, LIN Cong-ye, WANG Juan, Yi Ling. Distribution characteristics and pollution assessment of 238U and 226Ra in soils surrounding a uranium mining area. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(4): 1799-1805.
Sondès K. Re-examining uranium supply and demand:New insights[J]. Energy Policy, 2010,39(1):358-376.
[2]
Boekhout A, Gérard M, Kanzari A, et al. Uranium migration and retention during weathering of a granitic waste rock pile[J]. Applied Geochemistry, 2015,58:123-135.
[3]
Abdelouas A. Uranium mill tailings:Geochemistry, mineralogy, and environmental impact[J]. Elements (Quebec), 2006,2(6):335-341.
[4]
裴晶晶,胡南,张辉,等.铀尾矿中不同形态铀释放的影响因素及其相关性[J]. 中国环境科学, 2019,39(7):3073-3080. Pei J J, Hu N, Zhang H, et al. The influencing factors and correlation of different forms of uranium release in uranium tailings[J]. China Environmental Science, 2019,39(7):3073-3080.
[5]
Melanie S, Bas V, Randy B, et al. Geochemical and mineralogical assessment of reactivity in a full-scale heterogeneous waste-rock pile[J]. Minerals Engineering, 2020:145,106089.
[6]
Blackmore S, Vriens B, Sorensen M, et al. Microbial and geochemical controls on waste rock weathering and drainage quality[J]. The Science of the Total Environment, 2018:640-641,1004-1014.
[7]
Michael C M, Carol J P, Masaki H, et al. Seasonal cycling and mass-loading of dissolved metals and sulfate discharging from an abandoned mine site in northern Canada[J]. Applied Geochemistry, 2014,41:176-188.
[8]
蒋经乾,李玲,占凌之,等.某尾矿库周边水放射性分布特征及其评价[J]. 有色金属(冶炼部分), 2015,(11):60-63. Jiang J G, Li L, Zhan L Z, et al. Distribution characteristics and evaluation of radioactivity in water around a tailings pond[J]. Nonferrous Metals (Extractive Metallurgy), 2015,(11):60-63.
[9]
马盼军.某铀尾矿库周边土壤中核素U与重金属元素空间分布与污染评价研究[D]. 绵阳:西南科技大学, 2017. Ma P J. Spatial distribution and pollution evaluation of nuclide U and heavy metal elements in soil around a uranium tailings pond[D]. Mianyang:Southwest University of Science and Technology, 2017.
[10]
洪加标.某铀尾矿库周边环境土壤和地表水放射性水平测量与健康风险评价[D]. 南昌:东华理工大学, 2017. Hong J B. Radioactive level measurement and health risk assessment of soil and surface water surrounding a uranium tailings pond[D]. Nanchang:East China University of Technology, 2017.
[11]
Hasan B, Murat S, Emre G K, et al. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey[J]. Chemosphere, 2020,241,125015.
[12]
Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia[J]. Environmental Research, 2017,154:380-388.
[13]
Gevorg T, Lilit S, Olga B, et al. Origin identification and potential ecological risk assessment of potentially toxic inorganic elements in the topsoil of the city of Yerevan, Armenia[J]. Journal of Geochemical Exploration, 2016,167:1-11.
[14]
王漫漫.太湖流域典型河流重金属风险评估及来源解析[D]. 南京:南京大学, 2016. Wang M M. Risk assessment and source analysis of heavy metals in typical rivers in taihu Basin[D]. Nanjing:Nanjing University, 2016.
[15]
GB12397-90环境核辐射监测规定[S]. GB12397-90 Regulations for environmental nuclear radiation monitoring[S].
[16]
岳玉美,宋刚,张志强,等.广州市北部土壤天然放射性水平研究[J]. 中国环境科学, 2011,31(4):657-661. Yue Y M, Song G, Zhang Z Q, et al. Study on the natural radioactivity level of soil in the north of Guangzhou[J]. China Environmental Science, 2011,31(4):657-661.
[17]
Michalis T, Haralabos T, Stelios C, et al. Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks[J]. Radiation Measurements, 2003,37(3):221-229.
[18]
GB/T 13073-1991岩石样品中226Ra的分析方法-射气法[S]. GB/T 13073-1991 Method for analysis of 226Ra in rock samples-Emanation method[S].
[19]
GB/T 11743-2013土壤中放射性核素的γ能谱分析方法[S]. GB/T 11743-2013 Methods for energy spectrum analysis of radionuclides in soil[S].
[20]
马盼军,王哲,易发成,等.某铀尾矿库周边土壤中铀元素的空间分布与污染评价[J]. 原子能科学技术, 2017,51(5):956-960. Ma P J, Wang Z, Yi F C, et al. Spatial distribution and pollution evaluation of uranium element in soil around a uranium tailings pond[J]. Atomic Energy Science and Technology, 2017,51(5):956-960.
[21]
梁淼,李德鹏,路波,等.辽东湾西北部海域表层沉积物重金属含量的空间分布特征与污染状况评价[J]. 海洋环境科学, 2019,38(6):874-883. Liang M, Li D P, Lu B, et al. Spatial distribution characteristics and pollution Evaluation of heavy metal content in surface sediments in the northwest of Liaodong Bay[J]. Marine Environmental Science, 2019,38(6):874-883.
[22]
阿卜杜萨拉木·阿布都加帕尔,王宏卫,杨胜天,等.准东地区土壤重金属污染特征及来源分析[J]. 中国矿业, 2019,28(11):168-174. Abdougapal A, Wang H W, Yang S T, et al. Characteristics and source analysis of soil heavy metal pollution in Zhundong area[J]. China Mining Magazine, 2019,28(11):168-174.
[23]
杨名生.广西壮族自治区土壤中天然放射性核素含量调查研究[J]. 辐射防护, 1993,(4):299-302. Yang M S. Investigation on the content of natural radionuclides in soil in Guangxi Zhuang Autonomous Region[J]. Radiation Protection, 1993,(4):299-302.
[24]
全国环境天然放射性水平调查总结报告编写小组.全国土壤中天然放射性核素含量调查研究(1983~1990年)[J]. 辐射防护, 1992,(2):122-142. National Team preparing a summary report on the survey of natural environmental radioactivity levels. A national survey on the content of natural radionuclides in Soil (1983~1990year)[J]. Radiation Protection, 1992,(2):122-142.
[25]
Wang Z. Natural radiation environment in China[J]. International Congress Series, 2002,1225:39-46.
[26]
Huang D, Du J, Deng B, et al. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China:Implications for source and transport pathways[J]. Continental shelf research, 2013,57:10-17.
[27]
夏益华.核设施退役后土壤中容许剩余放射性水平和其他一些标准[J]. 辐射防护, 1994,(2):127-143. Xia Y H. The allowable residual radioactivity levels in the soil after decommissioning of nuclear facilities and other criteria[J]. Radiation Protection, 1994(2):127-143.