Analysis of meteorological causes and transmission characteristics of a heavy haze process in Beijing Tianjin Hebei and Yangtze River Delta
CHEN Hao-yuan1, WANG Xiao-qi1, CHENG Shui-yuan1, GUAN Pan-bo1, ZHANG Zhi-da1, BAI Wei-chao1, TANG Gui-qian2
1. Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engneering, Beijing University of Technology, Beijing 100124, China; 2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:Based on meteorological data and air quality data, the characteristics and causes of a large-scale severe pollution process in Beijing Tianjin Hebei region and Yangtze River Delta region from December 29, 2016 to January 8, 2017 were analyzed. The main meteorological characteristics of the heavy pollution process were pressure field, low boundary layer height and quiet breeze. The end of the heavy pollution process was due to the higher pressure gradient and better horizontal diffusion conditions, Based on the WRF-CMAQ (Weather Research and Forecasting Model and Community Multi-scale Air Quality) scenario analysis method, the effects of regional transmission and local accumulation on the heavy pollution process were evaluated. The analysis showed that in the early stage of heavy pollution controlled by south wind, the Yangtze River Delta region was mainly affected by transmission (15% ~ 20%) from the Yangtze River Delta, and the Yangtze River Delta region was mainly influenced by local contribution; in the accumulation stage, the local contribution of the Yangtze River Delta region decreased significantly, while the contribution from Beijing Tianjin Hebei region increased significantly (20% ~ 30%).The results showed that the peak value of the net transmission fluxes fromYangtze River Delta to Beijing Tianjin Hebei region occured in the early stage of heavy pollution (-21.52t/d), and the peak value of net transmission fluxes from Beijing Tianjin Hebei region to Yangtze River Delta occured in the accumulation stage (17.29t/d), the regional transport effect was the most active between 1001 and 1478m.
陈颢元, 王晓琦, 程水源, 关攀博, 张智答, 白伟超, 唐贵谦. 京津冀和长三角地区一次重霾过程气象成因及传输特征[J]. 中国环境科学, 2021, 41(6): 2481-2492.
CHEN Hao-yuan, WANG Xiao-qi, CHENG Shui-yuan, GUAN Pan-bo, ZHANG Zhi-da, BAI Wei-chao, TANG Gui-qian. Analysis of meteorological causes and transmission characteristics of a heavy haze process in Beijing Tianjin Hebei and Yangtze River Delta. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(6): 2481-2492.
潘亮,阎凤霞,吴峻石,等.2013~2019年上海早晨接地逆温指标与PM2.5定量关系研究[J]. 中国环境科学, 2021,41(2):517-526. Pan L, Yan F, Wu J, et al. Study on the quantitative relationship between PM2.5 and ground temperature inversion index in Shanghai in 2013~2019[J]. China Environmental Science, 2021,41(2):517-526.
[2]
赵子菁,魏永杰,张祥志,等.南京市霾天气与主要气象条件的相关分析[J]. 中国环境科学, 2015,35(12):3570-3580. Zhao Z, Wei Y, Zhang X, et al. Correlation analysis of haze weather and main meteorological conditions in Nanjing[J]. China Environmental Science, 2015,35(12):3570-3580.
[3]
廖碧婷,黄俊,王春林,等.广州地区灰霾过程和清洁过程的边界层特征对比分析[J]. 中国环境科学, 2018,38(12):4432-4443. Liao B, Huang J, Wang C, et al. Comparative analysis of boundary layer characteristics of haze process and clean process in Guangzhou[J]. China Environmental Science, 2018,38(12):4432-4443.
[4]
桂海林,江琪,康志明,等.2016年冬季北京地区一次重污染天气过程边界层特征[J]. 中国环境科学, 2019,39(7):2739-2747. Gui L H, Jiang Q, Kang Z M, et al. Boundary layer characteristics of a heavy pollution weather process in Beijing in the winter of 2016[J]. China environmental science, 2019,39(7):2739-2747.
[5]
Zhang Z, Gong D, Mao R, et al. Cause and predictability for the severe haze pollution in downtown Beijing in November-December 2015[J]. Science of the Total Environment, 2017,592:627-638.
[6]
王燕丽,薛文博,雷宇,等.京津冀区域PM2.5污染相互输送特征[J]. 环境科学, 2017,38(12):4897-4904. Wang Y L, Xue W B, Lei Y, et al. Characteristics of PM2.5 pollution transport in Beijing-Tianjin-Hebei Region[J]. Environmental science, 2017,38(12):4897-4904.
[7]
李瑞,李清,徐健,等.秋冬季区域性大气污染过程对长三角北部典型城市的影响[J]. 环境科学, 2020,41(4):1520-1534. Li R, Li Q, Xu J, et al. Effects of regional atmospheric pollution processes in autumn and winter on typical cities in the northern Yangtze river delta[J]. Environmental science, 2020,41(4):1520-1534.
[8]
姚森,张晗宇,王晓琦,等.2016年1月京津冀地区大气污染特征与多尺度传输量化评估[J/OL]. 环境科学:1-14[2020-10-22]. https://doi.org/10.13227/j.hjkx.202006042. Yao S, Zhang H, Wang X, et al. Quantitative assessment of air pollution characteristics and multi-scale transport in Beijing Tianjin Hebei region in January 2016[J/OL]. Environmental science:1-14[2020-10-22]. https://doi.org/10.13227/j.hjkx.202006042.
[9]
Fu X, Cheng Z, Wang S X, et al. Local and regional contributions to fine particle pollution in winter of the Yangtze River Delta, China[J]. Aerosol and Air Quality Research, 2016,16(4):1067-1080.
[10]
Zhang Y L, Zhu B,Gao J H, et al. The source apportionment of primary PM2.5 in an aerosol pollution event over Beijing-Tianjin-Hebei Region using WRF-Chem, China[J]. Aerosol and Air Quality Research, 2017,17(12):2966-2980.
[11]
Cheng S, Lang J, Zhou Y, et al. A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China[J]. Atmospheric Environment, 2013,79:308-306.
[12]
Metin B, Ulas I, Alper U. Evaluation of impact of residential heating on air quality of megacity istanbul by CMAQ[J]. Science of the Total Environment, 2019,651:1688-1697.
[13]
徐冉,张恒德,杨孝文,等.北京地区秋冬季大气污染特征及成因分析[J]. 环境科学, 2019,40(8):3405-3414. Xu R, Zhang H D, Yang X W, et al. Characteristics and causes of air pollution in autumn and winter in Beijing[J]. Environmental science, 2019,40(8):3405-3414.
[14]
Gao M, Carmichael G R, Wang Y, et al. Modeling study of the 2010 regional haze event in the North China Plain[J]. Atmospheric Chemistry & Physics, 2016,15(16):22781-22822.
[15]
郭伟,卜令兵,贾小芳,等.基于激光云高仪的北京沙尘气溶胶特征分析[J]. 气象, 2016,42(12):1540-1546. Guo W, Bu L B, Jia X F, et al. Analysis of aerosol characteristics of sand dust in Beijing based on laser cloud height analyzer[J]. Meteorology, 2016,42(12):15401546.
[16]
程水源,王传达,张晗宇.跨界地区大气边界层以下PM2.5传输通量数值模拟量化的方法[P]. 北京市:CN110569528A, 2019-12-13. Cheng S Y, Wang C D, Zhang H Y. Numerical simulation and quantification of PM2.5 transport flux below the atmospheric boundary Layer in transboundary regions[P]. Beijing:CN110569528A, 2019-1213.
[17]
Zhang H, Cheng S, Yao S, et al. Multiple perspectives for modeling regional PM2.5 transport across cities in the Beijing-Tianjin-Hebei region during haze episodes[J]. Atmospheric Environment, 2019, 212:22-35.
[18]
沈楠驰,周丙锋,李珊珊,等.2015~2019年天津市大气污染物时空变化特征及成因分析[J/OL]. 生态环境报:1-12[2020-10-24].http://kns.cnki.net/kcms/detail/44.1661.X.20201015.2020.002.html. Shen N C, Zhou B F, Li S S, et al. Spatial and temporal variation characteristics and Causes of atmospheric pollutants in Tianjin from 2015 to 2019[J/OL]. Ecological environment:1-12[2020-10-24]. http://kns.cnki.net/kcms/detail/44.1661.X.20201015.2020.002.html.
[19]
成莹菲,侯雪伟,朱彬,等.稳定天气形势下京津冀和长三角地区重度污染过程气象成因解析[J]. 环境科学学报, 2020,40(5):1575-1586. Cheng Y F, Hou X W, Zhu B, et al. Analysis of meteorological causes of severe pollution in The Beijing-Tianjin-Hebei region and the Yangtze River Delta under stable weather conditions[J]. Journal of environmental science, 2020,40(5):1575-1586.
[20]
李梦,唐贵谦,黄俊,等.京津冀冬季大气混合层高度与大气污染的关系[J]. 环境科学, 2015,36(6):1935-1943. Li M, Tang G Q, Huang J, et al. Relationship between the height of atmospheric mixing layer and atmospheric pollution in Winter in Beijing-Tianjin-Hebei region[J]. Environmental Science, 2015,36(6):1935-1943.
[21]
姚青,蔡子颖,韩素芹,等.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J]. 中国环境科学, 2014,34(3):596-603. Yao Q, Cai Z Y, Han S Q, et al. Effect of relative humidity on aerosol concentration spectrum distribution and atmospheric visibility in Winter in Tianjin[J]. Environmental Science of China, 2014,34(3):596603.
[22]
Liu P F, Zhao C S, Gobel T, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain[J]. Atmospheric Chemistry and Physics, 2011,11(1):3479-3494.
[23]
王跃思,姚利,王莉莉,等.2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学, 2014,44(1):15-26. Wang Y S, Yao L, Wang L L, et al. Causes of heavy haze pollution in Central and Eastern China in January 2013[J]. Science in China:Earth Sciences, 2014,44(1):15-26.
[24]
周彬,刘端阳,魏建苏,等.降水对气溶胶颗粒物清除作用的初步分析[J]. 长江流域资源与环境, 2015,24(S1):160-170. Zhou B, Liu D Y, Wei J S, et al. Preliminary analysis of the effect of precipitation on the removal of aerosol particles[J]. Resources and Environment of the Yangtze River Basin, 2015,24(S1):160-170.
[25]
杨旭,张小玲,康延臻,等.京津冀地区冬半年空气污染天气分型研究[J]. 中国环境科学, 2017,37(9):3201-3209. Yang X, Zhang X L, Kang Y Z, et al. Research on the classification of air pollution weather in the half year of winter in beijing-tianjin-hebei region[J]. China environmental science, 2017,37(9):3201-3209.
[26]
郁珍艳,高大伟,李正泉,等.低层通风量及逆温条件对浙江省空气质量的影响分析[J]. 环境科学学报, 2020,40(9):3165-3173. Yu Z Y, Gao D, Li Z Q, et al. Analysis on the influence of low level ventilation and temperature inversion on air quality in zhejiang province[J]. Chinese Journal of Environmental Science, 2020,40(9):3165-3173.
[27]
曹红丽,陈奇.西安边界层逆温特征及其与空气污染的关系[J]. 陕西气象, 2014,(2):13-16. Cao H L, Chen Q. Characteristics of boundary layer inversion and its relationship with air pollution in Xi'an[J]. Meteorology, Shanxi, 2014,(2):13-16.
[28]
Wang X Q, Wei W, Cheng S Y, et al. Characteristics and classification of PM2.5 pollution episodes in Beijing from 2013 to 2015[J].Science of the Total Environment, 2018,612:170-179.
[29]
X G, Liu J, Li Y, et al. Formation and evolution mechanism of regional haze:a case study in the megacity Beijing, China[J]. Atmospheric Chemistry and Physics, 2013,13(9).
[30]
李霞,贾健.复杂地形多尺度气流对城市大气污染影响的研究进展[J]. 沙漠与绿洲气象, 2016,10(6):1-10. Li X, Jia J. Research progress on the influence of complex terrain multi-scale airflow on urban air pollution[J]. Desert and oasis meteorology, 2016,10(6):1-10.
[31]
蔡子颖,杨旭,韩素芹,等.基于天气背景天津大气污染输送特征分析[J/OL]. 环境科学:1-15[2020-10-19]. https://doi.org/10.13227/j.hjkx.202004252. Cai Z Y, Yang X, Han S Q, et al. Based on the background analysis of characteristics of atmospheric pollution in tianjin transportation[J/OL]. Environmental science:1-15[2020-1019]. https://doi.org/10.13227/j.hjkx.202004252.
[32]
毛卓成,马井会,许建明,等.上海地区持续东风系统控制下污染扩散条件分析[J]. 气象, 2015,41(7):890-898. MAO Z C, Ma J H, Xu J M, et al. Analysis of pollution diffusion conditions under the control of continuous east wind system in Shanghai[J]. Meteorology, 2015,41(7):890-898.
[33]
Chang X, Wang S X, Zhao B, et al. Assessment of inter-city transport of particulate matter in the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and Physics[J]. 2018,18:4843-4858.
[34]
Huang X, Ding A, Wang Z, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China[J]. NATURE Geoscience, 2020,13(6):428.
[35]
邓发荣,康娜, Kumar K R,等.长江三角洲地区大气污染过程分析[J]. 中国环境科学, 2018,38(2):401-411. Deng F R, Kang N, Kumar K R, et al. Analysis of atmospheric pollution process in the Yangtze River Delta region[J]. Environmental Science in China, 2008,38(2):401-411.
[36]
康汉青,朱彬.长三角冬季PM2.5污染的形成原因及来源追踪[C]//中国颗粒学会气溶胶专业委员会、台湾气胶研究学会.第十五届海峡两岸气胶技术研讨会论文集.中国颗粒学会气溶胶专业委员会、台湾气胶研究学会:中国颗粒学会气溶胶专业委员会, 2017:1. Kang H Q, Zhu B. Tracing of the causes and sources of PM2.5 pollution in the Yangtze River Delta in winter[C]//Aerosol Professional Committee of Chinese Particle Society, Taiwan Aerosol Research Society Proceedings of the 15th Cross-strait Seminar on Aerosol Technology. Aerosol Professional Committee of The Chinese Particle Society, Taiwan Aerosol Research Society:Aerosol Professional Committee of the Chinese Particle Society, 2017:1.