Abstract:To explore the transmission characteristics of indoor and outdoor microbial aerosols in residences of severe cold areas, this study was conducted by combining microbial growth models and numerical simulation techniques. The main dominant bacterial flora in residential buildings were Bacteroidetes, Firmicutes, and Proteobacteria. The analysis of the source of bacteria showed that the main sources were manure, soil, extreme environments, plants, water sources and decaying organic matter. Among them, the proportion of manure sources was relatively high due to the long indoor activities in winter. Research on the propagation law of bacteria in the room showed that the concentration distribution of microbial aerosol in the indoor environment was related to the structure of the room, the form of turbulence and the particle gravity field. Indoor ventilation could hinder the diffusion of microbial aerosols. As the height of the room decreases, the indoor flow field became more complex. Simulation analysis showed that 90% of the bacterial aerosol particles in the room escaped within 50s. And as the height of the room decreases, the concentration of bacterial aerosol gradually decreased, and the range became wider. Indoor ventilation had the effect of preventing the accumulation of bacterial aerosols in the room and diluted the concentration of pollution.
Li J, Chen H, Li X, et al. Differing toxicity of ambient particulate matter (PM) in global cities[J]. Atmospheric environment, 2019,212:305-315.
[2]
Cao D, Gao W, Wu J, et al. Occurrence and human exposure assessment of short- and medium-chain chlorinated paraffins in dusts from plastic sports courts and synthetic turf in Beijing, China[J]. Environmental Science & Technology, 2018.
[3]
江桂斌.当前细颗粒分析毒理研究中的问题与进展[C]//中国化学会.中国化学会第十一届全国生物医药色谱及相关技术学术交流会(大会特邀报告及墙报)论文摘要集, 2016:1. Jiang G B. Current problems and progress in the analytical toxicology of fine particles[C]//Chinese Chemical Society. The 11th National Biomedical Chromatography and Related Technology Academic Exchange Conference (Invited Report and Poster) of the Chinese Chemical Society, 2016:1.
[4]
李越洋,姬亚芹,张军,等.盘锦市冬季大气PM2.5元素污染特征及来源解析[J]. 环境化学, 2019,38(8):1891-1898. Li Y Y, Ji Y Q, Zhang J, et al. Panjin winter atmospheric PM2.5 element pollution characteristics and source analysis[J]. Environmental Chemistry, 2019,38(8):1891-1898.
[5]
刘贤荣,郑权,胡恭任,等.南昌市道路尘PM2.5中重金属分布特征及健康风险评价[J]. 环境化学, 2019,38(7):1609-1618. Liu X R, Zheng Q, Hu G R, et al. The distribution characteristics and health risk assessment of heavy metals in road dust PM2.5 in Nanchang City[J]. Environmental Chemistry, 2019,38(7):1609-1618.
[6]
邢雅婷,王帅,赵玲.呼和浩特市城区大气污染物浓度变化特征分析[J]. 环境化学, 2019,38(5):1139-1149. Xing Y T, Wang S, Zhao L. Characteristics analysis of air pollutant concentration changes in the urban area of Hohhot[J]. Environmental Chemistry, 2019,38(5):1139-1149.
[7]
王申博,范相阁,和兵,等.河南省春节和疫情影响情景下PM2.5组分特征[J]. 中国环境科学, 2020,40(12):5115-5123. Wang S B, Fan X G, He B, et al. Characteristics of PM2.5 components under the Spring Festival and epidemic impact scenarios in Henan Province[J]. China Environmental Science, 2020,40(12):5115-5123.
[8]
张章,刘保献,安欣欣,等.北京市传统春节假期空气质量特征研究[J]. 中国环境科学, 2021,41(1):102-113. Zhang Z, Liu B X, An X X, et al. Study on air quality characteristics of Beijing traditional spring festival holiday[J]. China Environmental Science, 2021,41(1):102-113.
[9]
Cao C, Jiang W J, Wang B Y, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environmental Science & Technology, 2014,48(3):1499-1507.
[10]
杜睿.大气生物气溶胶的研究进展[J]. 气候与环境研究, 2006, 11(4):546-552. Du R. Research progress of atmospheric bioaerosols[J]. Climatic and Environmental Research, 2006,11(4):546-552.
[11]
刘鹏霞.西安市PM10和PM2.5中微生物浓度及细菌群落结构研究[D]. 长安大学, 2019. Liu P X. Study on the microbial concentration and bacterial community structure in PM10 and PM2.5 in Xi'an[D]. Chang'an University, 2019.
[12]
王珏,郑云昊,刘兆荣,等.呼出气VOCs在上呼吸道感染病患与健康人间的异同[J]. 北京大学学报(自然科学版), 2018,54(4):807-814. Wang J, Zheng Y H, Liu Z R, et al. The similarities and differences between exhaled breath VOCs in upper respiratory tract infection patients and healthy people[J]. Journal of Peking University (Natural Science Edition), 2018,54(4):807-814.
[13]
王伟,付红蕾,王廷路,等.西安市秋季灰霾天气微生物气溶胶的特性研究[J]. 环境科学学报, 2016,36(1):279-288. Wang W, Fu H L, Wang T L, et al. Study on the characteristics of microbial aerosols in autumn haze weather in Xi'an[J]. Acta Scientiae Circumstantiae, 2016,36(1):279-288.
[14]
Li J, Cao J, Zhu Y, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018,52(19):10975-10984.
[15]
Chen H, Li X, Yao M. Rats sniff off toxic air[J]. Environmental Science and Technology, 2020.
[16]
Kaufmann A F, Mcdada J E, Patton C M, et al. Pontiac fever:isolation of the etiologic agent (legionella pneumophila) and demonstration of its mode of transmission[J]. American Journal of Epidemiology, 1981, 114(3):337-347.
[17]
练玉银,刘志刚,吉坤美.空调系统军团菌的污染及其检测、预防研究进展[J]. 中国人兽共患病杂志, 2005,21(11):1014-1016. Lian Y Y, Liu Z G, Ji K M. Contamination of air-conditioning system Legionella and its detection and prevention research progress[J]. Chinese Journal of Zoonoses, 2005,21(11):1014-1016.
[18]
Laforce F M. Airborne infections and modern building technology[J]. Environment International, 1986,12(1-4):137-146.
[19]
李凤山.结核病的传染及其对策(综述)[J]. 承德医学院学报, 1991, 8(4):254-256. Li F S. Infection of tuberculosis and its countermeasures (review)[J]. Journal of Chengde Medical College, 1991,8(4):254-256.
[20]
Li D W, Kendrick B. Functional relationships between airborne fungal spores and environmental factor in Kitchener-Waterloo, Ontario, as detected by Canonical Correspondence Analysis[J]. Grana, 1994, 33(3):166-176.
[21]
Tong Y Y, Lighthart B. Effect of simulated solar radiation on mixed outdoor atmospheric bacterial population[J]. FEMS Microbiology Ecology, 1998,26(4):311-316.
[22]
Marchisio V F, Airaudi d, Barchi C, et al. One-year monitoring of the airborne fungal community in a suburb of Turin and assessment of its functional relations with the environment[J]. Mycological Research, 1997,101:821-828.
[23]
Zhu U H, Phelan P, Duan T H, et al. Characterizations and relationships between outdoor and indoor bioaerosols in an office building[J]. China Particuology, 2003,1(3):119-123.
[24]
Bowers R M, Mcletchie S, Knight R, et al. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments[J]. ISME Journal, 2011,5(4):601-612.
[25]
王步英.北京冬季大气中细菌群落结构特征及霾污染对其影响[D]. 北京:清华大学, 2015. Wang B Y. The characteristics of bacterial community structure in Beijing's winter atmosphere and the influence of haze pollution on it[D]. Beijing:Tsinghua University, 2015.
[26]
黄藏宇.猪场微生物气溶胶扩散特征及舍内空气净化技术研究[D]. 金华:浙江师范大学, 2012. Huang Z Y. Study on the characteristics of microbial aerosol diffusion in pig farm and air purification technology in the house[D]. Jinhua:Zhejiang Normal University, 2012.
[27]
Fujikawa H, Kai A, Morozumi S. A new logistic model for Escherichia coli growth at constant and dynamic temperatures[J]. Food Microbiology, 2004,21(5):501-509.
[28]
Robertson T B. Further remarks on the normal rate of growth of an individual, and its biochemical significance[J]. Archiv Fur Entwicklungsmechanik Der Organismen, 1908,26(1):108-118.
[29]
Cui Q W, Lawson G J. Study on models of single populations:An expansion of the logistic and exponential equations[J]. Journal of Theoretical Biology, 1982,98:645-659.
[30]
Chorin E, ThuaulT D, Cleret J J, et al. Modelling Bacillus cereus growth[J]. International Journal of Food Microbiology, 1997,38:229-34.
[31]
Jolicoeur P, Cabana T, Ducharme G. A four-parameter generalization of the Gompertz curve suitable for somatic growth[J]. Growth, development, and aging:GDA, 1992,56(2):69-74.
[32]
曹建莉,赵梦亚.Gompertz曲线和logistic曲线在生物数学中的比较与应用[J]. 佳木斯教育学院学报, 2014,1:140-142. Cao J L, Zhao M Y. Comparison and application of Gompertz curve and logistic curve in biomathematics[J]. Journal of Jiamusi Education Institute, 2014,1:140-142.
[33]
刘伟.自然风速场下微生物气溶胶的室内外扩散与风险研究[D]. 天津:天津大学, 2010. Liu W. Indoor and outdoor microbial aerosol diffusion and risk research under natural wind speed field[D]. Tianjin:Tianjin University, 2010.
[34]
蒋德海,蒋维楣,苗世光.城市街道峡谷气流和污染物分布的数值模拟[J]. 环境科学研究, 2006,19(3):7-12. Jiang D H, Jiang W M, Miao S G. Numerical simulation of airflow and pollutant distribution in urban street canyons[J]. Environmental Science Research, 2006,19(3):7-12.
[35]
Solazzo E, Cai X M, Vardoulakis S. Improved parameterisation for the numerical modelling of air pollution within an urban street canyon[J]. Environmental Modelling & Software, 2009,24:381-388.
[36]
HJ949-2018民用建筑环境空气颗粒物(PM2.5)渗透系数调查技术规范[S]. 北京:中国环境出版社, 2018. HJ949-2018 Technical specification for investigation of permeability coefficient of air particulate matter (PM2.5) in civil building environment[S]. Beijing:China Environment Press, 2018.
[37]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011,doi:10.14806/ej.17.1.200.
[38]
Edgar Robert C, HAAS Brian J, CLEMENTE Jose C., et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011,27(16):2194-2200.
[39]
Edgar Robert C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013,10(10):996-998.
[40]
Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007,73(16):5261-5267.
[41]
Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research, 2013,1(41):D590-D596.
[42]
Peleg M, CorradinI M G, Normand M D. The logistic (Verhulst) model for sigmoid microbial growth curves revisited[J]. Food Research International, 2007,40(7):808-818.
[43]
Yu I T S, Li Y G, Wong T W, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus[J]. New England Journal of Medicine, 2004,350(17):1731-1739.
[44]
张鹏.建筑小区内微生物污染物颗粒的扩散模拟[D]. 天津:天津大学, 2008. Zhang P. Diffusion simulation of microbial pollutant particles in building plots[D]. Tianjin:Tianjin University, 2008.
[45]
郑丽敏,董庆利,丁甜,等.即食凉拌菜中单增李斯特菌生长模型的建立[J]. 食品科学, 2013,34(15):22-26. Zheng L M, Dong Q L, Ding Tian, etc. Establishment of growth model of Listeria monocytogenes in ready-to-eat cold dishes[J]. Food Science, 2013,34(15):22-26.
[46]
Augustin J C, Brouillaud D A, Rosso L, et al. Significance of inoculum size in the lag time of Listeria monocytogenes[J]. Applied and Environmental Microbiology, 2000,66(4):1706-1710.
[47]
梁宗敏,杜睿,杜鹏瑞,等.北京大气降水中细菌气溶胶的多样性研究[J]. 中国环境科学, 2014,34(2):317-323. Liang Z M, Du R, Du P R, et al. Study on the diversity of bacterial aerosols in atmospheric precipitation in Beijing[J]. China Environmental Science, 2014,34(2):317-323.