Abstract:A heavy metal floccutant dithiocarboxyl hydroxymethy-polyacrylamide (DTMPAM) was prepared by using polyacrylamide, formaldehyde, sodium hydroxide and carbon disulfide as raw materials. The absorption spectra of the chelate formed between DTMPAM and Cu2+ was determined by UV spectrophotometry under different Cu2+ concentrations, dithiocarboxyl groups (—CSS-) concentrations and pH values. The coordination ratio of the chelate was discussed, the stability of the chelate DTMPAM-Cu at different pH values and different —CSS- concentrations was investigated, and its stability constant was calculated. The results showed that the maximum absorption peaks of DTMPAM appeared at 207 and 226nm, but the maximum absorption peaks of chelate DTMPAM-Cu appeard at 220 and 260nm, respectively. Compared with the absorption peaks of DTMPAM, the maximum absorption peaks of chelate DTMPAM-Cu occurred red shifting. Under different —CSS- concentrations (3.0×10-5~6.0×10-5mol/L) and pH values (3.0~9.0), the chelating ratio of DTMPAM and Cu2+ was 2:1. When the —CSS- concentration was 3.0x10-5~6.0×10-5mol/L, the chelation stability constant lgβ2 of DTMPAM-Cu was between 10.5725~11.4473; with the increase of —CSS- concentration, the chelating stability constant decreased slightly. At different pH values, the chelation stability constants of DTMPAM-Cu were different, when the pH value was 3.0~5.0, the stability constant of DTMPAM-Cu increased gradually with the increase of pH value. When the pH value was 6.0~9.0, the stability constant of DTMPAM-Cu decreased slightly.
严亚萍, 王刚, 王露露, 周雅琦. 二硫代羧基化羟甲基聚丙烯酰胺与Cu2+的螯合稳定性[J]. 中国环境科学, 2021, 41(7): 3266-3274.
YAN Ya-ping, WANG Gang, WANG Lu-lu, ZHOU Ya-qi. Chelating stability of dithiocarboxyl hydroxymethy-polyacrylamide with Cu2+. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(7): 3266-3274.
Meseldzija S, Petrovic J, Onjia A, et al. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater[J]. Journal of Industrial and Engineering Chemistry, 2019,75:246-252.
[2]
Hoslett J, Ghazal H, Ahmad D, et al. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste[J]. Science of The Total Environment, 2019,673:777-789.
[3]
Gunatilake S. Methods of removing heavy metals from industrial wastewater[J]. Methods, 2015,1(1):14.
[4]
Al-Saydeh S A, El-Naas M H, Zaidi S J. Copper removal from industrial wastewater:A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2017,56:35-44.
[5]
Yan Y, Liang X, Ma J, et al. Rapid removal of copper from wastewater by Fe-based amorphous alloy[J]. Intermetallics, 2020,124:106849.
[6]
常青.絮凝学研究的新领域-具有重金属捕集功能的高分子絮凝剂[J]. 环境科学学报, 2015,35(1):1-11. Chang Q. New research area of flocculation in water treatment-macromolecule flocculant with the function of trapping heavy metal[J]. Acta Scientiae Circumstantiae, 2015,35(1):1-11.
[7]
郭睿,王超,杨江月,等.螯合絮凝剂EPPCX的制备及对Pb2+、Cu2+捕集性能研究[J]. 环境科学学报, 2017,37(4):1396-1403. Guo R, Wang C, Yang J Y, et al. Preparation of heavy metal chelating flocculant EPPCX and its removal performance for Pb2+ and Cu2+[J]. Acta Scientiae Circumstantiae, 2017,37(4):1396-1403.
[8]
肖晓,孙水裕,严苹方,等.高效重金属捕集剂EDTC的结构表征及对酸性络合铜的去除特性研究[J]. 环境科学学报, 2016,36(2):537-543. Xiao X, Sun S Y, Yan P F, et al. Structure characterization of highly-efficient heavy metal chelating agent EDTC and its removal of acid complex copper[J]. Acta Scientiae Circumstantiae, 2016,36(2):537-543.
[9]
王刚,管映兵,李嘉,等.重金属絮凝剂对水中Cu2+和腐殖酸的去除性能[J]. 中国环境科学, 2018,38(9):3367-3372. Wang G, Guan Y B, Li J, et al. Removal performance of Cu2+ and humic acid from aqueous solutions by heavy metal flocculant[J]. China Environmental Science, 2018,38(9):3367-3372.
[10]
高占锋,吕林,李素芬,等.有机微量元素络(螯)合物的结构特征稳定性及其生物学意义[J]. 微量元素与健康研究, 2008,25(3):50-54. Gao Z F, Lv L, Li S F, et al. Chemical characteristics, stability and biological effects of organic trace mineral complex[J]. Studies of Trace Elements and Health, 2008,25(3):50-54.
[11]
杨士凤.凝胶过滤色谱-ICPMS联用技术测定聚合物-金属络合物稳定常数和配位数[D]. 厦门:厦门大学, 2014:10-17. Yang S F. Measurement of stability constants and coordination numbers of polymer-metal complex by GFC-ICPMS[D]. Xiamen:Xiamen University, 2014:10-17.
[12]
Jarvis N V, Wagener J M. Mechanistic studies of metal ion binding to water-soluble polymers using potentiometry[J]. Talanta, 1995,42(2):219-226.
[13]
吴俊.两性高分子螯合絮凝剂的合成及其螯合絮凝性能研究[D]. 长沙:湖南科技大学, 2011:47-53. Wu J. Study on synthesis of amphoteric chelating polymer flocculant and its chelation-flocculant performance[D]. Changsha:Hunan University of Science and Technology, 2011:47-53.
[14]
廖强强,李义久,相波,等.二乙基二硫代氨基甲酸钠与Cu2+、Pb2+、Cd2+、Ni2+的络合性研究[J]. 精细化工, 2008,25(3):281-283. Liao Q Q, Li Y J, Xiang B, et al. Stability of Cu2+, Pb2+, Cd2+ and Ni2+ complexes of sodium diethyldithiocarbamate[J]. Fine Chemicals, 2008,25(3):281-283.
[15]
刘立华,周智华,吴俊,等.两性高分子螯合絮凝剂与Cu(II)、Pb(II)、Cd(II)、Ni(II)的螯合稳定性[J]. 环境科学学报, 2013,33(1):79-87. Liu L H, Zhou Z H, Wu J, et al. Chelating stability of amphoteric chelating polymer flocculant with Cu(II), Pb(II), Cd(II) and Ni(II)[J]. Acta Scientiae Circumstantiae, 2013,33(1):79-87.
[16]
Liu P, Guo J. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006,282-283:498-503.
[17]
何宝菊.二硫代羧基化聚丙烯酰胺衍生物的制备及其除铜性能研究[D]. 兰州:兰州交通大学, 2018:13-22. He B J. Preparation of dithiocarboxyl polyacrylamide derivatives and its performance for removing copper[D]. Lanzhou:Lanzhou Jiaotong University, 2018:13-22.
[18]
王刚,常青.新型高分子絮凝剂对水中有机配位汞的捕集性能[J]. 中国环境科学, 2012,32(5):837-842. Wang G, Chang Q. Performance of trapping mercury combined with organic coordination agent in water by novel macromolecule flocculant[J]. China Environmental Science, 2012,32(5):837-842.
[19]
袁海飞,王刚,徐敏,等.重金属絮凝剂DTMPAM去除水中Cu2+和EDTA-Cu的性能[J]. 环境科学学报, 2019,39(12):3985-3993. Yuan H F, Wang G, Xu M, et al. Removal performance for Cu2+ and EDTA-Cu in aqueous solutions with heavy metal flocculant DTMPAM[J]. Acta Scientiae Circumstantiae, 2019,39(12):3985-3993.
[20]
王刚,王志科,常青,等.改性聚乙烯亚胺捕集和回收水中的Cu2+[J]. 环境科学研究, 2017,30(6):953-959. Wang G, Wang Z K, Chang Q, et al. Removal and recovery of copper ions from aqueous solutions by modified polyethyleneimine[J]. Research of Environmental Sciences, 2017,30(6):953-959.
[21]
Wang G, Cheng X L, Zeng Y C, et al. Effects of some parameters on the removal of Cd(II) ions from aqueous solutions by polyethyleneimine-sodium xanthogenate[J]. International Journal of Environmental Science and Technology, 2020,17(12):4733-4744.
[22]
冯颖,张庆瑾,王珏程,等.pH对壳聚糖螯合铜(II)的螯合机理及稳定常数的影响(英文)[J]. 过程工程学报, 2020,20(6):646-654. Feng Y, Zhang Q J, Wang Y C, et al. Effect of pH on the chelating mechanism and stability constant of chitosan-Cu(II) chelate complex[J]. The Chinese Journal of Process Engineering, 2020,20(6):646-654.
[23]
廖强强,曹艳,李义久,等.二硫代氨基甲酸改性葡萄糖与Cu(II)和Ni(II)的络合性[J]. 上海电力学院学报, 2014,30(1):71-74. Liao Q Q, Cao Y, Li Y J, et al. Stability of Cu(II) and Ni(II) complexes with a dithiocarbamate modified glucose[J]. Journal of Shanghai University of Electric Power, 2014,30(1):71-74.
[24]
王刚.重金属絮凝剂聚乙烯亚胺基黄原酸钠的制备及性能研究[D]. 兰州:兰州交通大学, 2013,29-33,111-112. Wang G. Preparation and performance of polyethyleneimine-sodium xanthogenate as heavy metal flocculant[D]. Lanzhou:Lanzhou Jiaotong University, 2013,29-33,111-112.
[25]
李润卿.有机结构波普分析[M]. 天津:天津大学出版社, 2002:5-19. Li R Q. Spectral analysis of organic structures[M]. Tianjin:Tianjin University Press, 2002:5-19.
[26]
Yang Y, Zuo B, Li J, et al. Studies on the stability of four-membered ring chelates Part V. The stability of dialkyl dithiocarbamate chelates[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 1996,52(14):1915-1919.
[27]
Liu W, Duan H, Wei D, et al. Stability of diethyl dithiocarbamate chelates with Cu(II), Zn(II) and Mn(II)[J]. Journal of Molecular Structure, 2019,1184:375-381.
[28]
Fayed T A, Gaber M, El-Nahass M N, et al. Synthesis, structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II) Zn(II) and Cd(II) chelates[J]. Journal of Molecular Structure, 2020,1221:128742.
[29]
李士凤,周杨,姚淑华,等.腐植酸中不同分子量组分与As(III)的络合性能[J]. 中国环境科学, 2020,40(10):4395-4401. Li S F, Zhou Y, Yao S H, et al. Complexation of As(III) with different molecular weight fractions of humic acid[J]. China Environmental Science, 2020,40(10):4395-4401.
[30]
郑怀礼,陈春艳,岳虎秀,等.重金属离子捕集剂DTC(EDA)的合成及其应用[J]. 环境化学, 2006,25(6):765-767. Zheng H L, Cheng C Y, Yue H X, et al. Synthesis and application of the heavy metal capturing agent DTC(EDA)[J]. Environmental Chemistry, 2006,25(6):765-767.
[31]
朱明华,胡坪.仪器分析[M]. 北京:高等教育出版社, 2008:273-279. Zhu M H, Hu P. Instrumental analysis[M]. Beijing:Higher Education Press, 2008:273-279.
[32]
华东理工大学分析化学教研组.分析化学.第6版[M]. 北京:高等教育出版社, 2009:180-181. Analytical chemistry teaching and research group, East China University of Science and Technology. Analytical Chemistry, 6th edition[M]. Beijing:Higher Education Press, 2009:180-181.
[33]
Lyklema J. Adsorption of polyelectrolytes and their effects on the interaction of colloid particles[J]. Modern trends of colloid science in chemistry and biology, 1985:55-73.
[34]
杨朕.新型两性型壳聚糖基絮凝剂的絮凝性能研究及分形理论对絮凝动力学模型的修正[D]. 南京:南京大学, 2014:33-34. Yang L. Flocculation performance of novel kinds of amphoteric chitosan-based flocculants and modification of flocculation kinetics model using fractal theory[D]. Nanjing:Nanjing University, 2014:33-34.
[35]
赵婧,吴敏,王万宾,等.铜与DOM络合稳定常数的影响因子测定[J]. 上海环境科学, 2014,33(6):240-244. Zhao J, Wu M, Wang W B, et al. Determination of impact factors on complexing stability constant of copper with DOM[J]. Shanghai Environmental Sciences, 2014,33(6):240-244.
[36]
王刚,李嘉,何宝菊,等.两性高分子絮凝剂聚乙烯亚胺基黄原酸钠除浊性能[J]. 中国环境科学, 2018,38(12):4537-4544. Wang G, Li J, H B J, et al. Removal performance for turbidity by amphoteric macromolecule flocculant with polyethyleneimine sodium xanthogenatet[J]. China Environmental Science, 2018,38(12):4537-4544.
[37]
常青,安瑜,于明泉.高分子重金属絮凝剂的制备及含铜废水处理[J]. 环境化学, 2006,25(2):176-179. Chang Q, An Y, Y M Q. Preparation of flocculant pex and treatment of wastewater containing copper[J]. Environmental Chemistry, 2006, 25(2):176-179.