A grid-stirring turbulence generation device was applied with the grid rotation frequency of 0, 500, 1000and 1500Hz, corresponding to the turbulent energy dissipation rate ranged in 0~8.93×10-3m2/s3, to investigate the effect of flow turbulence on the growth of Microcystis aeruginosa under high light intensity and phosphorus deficiency conditions. Under high light intensity (8000lx), the growth of Microcystis was significantly inhibited, and the algal concentration under the static condition was only 47.7% of that under normal light intensity. However, turbulence could alleviate the effect of high light environment to a certain extent. Among them, the algae concentration in the 1000Hz group was the highest, which was 1.8times higher compared to the static group. The Chl-a content in the high light intensity group was 1.52 to 1.78 times that of normal light conditions, which indicated that high light intensity might not promote the growth and division of algal cells, and the accumulation of Chl-a might be the defense response of Microcystis aeruginosa to the adverse conditions of high light intensity. In the absence of phosphorus, the algal biomass was only 1/6~1/4 of that in normal nutritional conditions. However, with the increase of turbulence intensity, the algae biomass increased slightly and the Chl-a concentration increased significantly from the initial concentration. Among them, the 1000Hz group was found to be with the best growth. Flow turbulence can alleviate the harsh environments such as high light intensity and phosphorus deficiency for algae growth and accumulation of Chl-a might be the defense response of algal cells to the adverse environment.
程昊, 张海平. 缺磷及高光照条件下紊动对铜绿微囊藻生长的影响[J]. 中国环境科学, 2020, 40(2): 816-823.
CHENG Hao, ZHANG Hai-ping. Effect of flow turbulence on the growth of Microcystis aeruginosa under phosphorus deficiency and high light intensity conditions. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(2): 816-823.
Paerl, Hans. Mitigating harmful cyanobacterial blooms in a human and climatically-impacted world[J]. Life, 2014,4(4):988-1012.
[2]
翁焕新,孙向卫,秦亚超,等.光照强度对隐藻吸收铁和磷的影响[J]. 地球化学, 2007,36(4):383-390. Weng H, Sun X W, Qin Y C, et al. Effects of irradiance on Fe and P uptake by cryptomonos[J]. Geochemistry, 2007,36(4):383-390.
[3]
金相灿.湖泊富营养化研究中的主要科学问题——代"湖泊富营养化研究"专栏序言[J]. 环境科学学报, 2008,29(1):21-23. Jin X C. The key scientific problems in lake eutrophication studies[J]. Journal of Environmental Science, 2008,29(1):21-23.
[4]
Ding L, Wu J Q, Pang Y, et al. Simulation study on algal dynamics based on ecological flume experiment in Taihu Lake, China[J]. ecological engineering, 2007,31(3):200-206.
[5]
Jacoby C A, Frazer T K. Eutrophication:time to adjust expectations[J]. Science, 2009,324(5928):723-724.
[6]
Zhang H P, Zhu Y P, Li F P, et al. Nutrients in the wet deposition of Shanghai and ecological impacts[J]. Physics and Chemistry of the Earth, 2011,36(9-11):407-410.
[7]
Leung P T Y, Yi A X, Ip J C H, et al. Photosynthetic and transcriptional responses of the marine diatom, Thalassiosira pseudonana, to the combined effect of temperature stress and copper exposure[J]. Marine Pollution Bulletin, 2017,(2):124.
[8]
谭啸,刘倩倩,段志鹏,等.太湖夏季水下光谱及色光对微囊藻群体的影响[J]. 中国环境科学, 2017,37(11):4277-4283. Tan X, Liu Q Q, Duan Z P, et al. Underwater spectra of Lake Taihu in summer and influences of chromatic light on Microcystis colonies[J]. China Environmental Science, 2017,37(11):4277-4283.
[9]
颜润润,逄勇,陈晓峰,等.不同风等级扰动对贫富营养下铜绿微囊藻生长的影响[J]. 环境科学, 2008,29(10):63-67. Yan R R, Feng Y, Chen X F, et al. Effect of disturbance on growth of Microcystis aeruginosa in different nutrient Levels[J]. Environmental Science, 2008,29(10):63-67.
[10]
Zhang J, Geng J J, Ren H Q, et al. Physiological and biochemical responses of Microcystis aeruginosa to phosphite[J]. Chemosphere, 2011,85(8):1325-1330.
[11]
张芹,李强,南红岩.多因素综合作用对铜绿微囊藻生长的影响[J]. 环境监测管理与技术, 2017,29(5):51-55. Zhang Q, Li Q, Nan H Y. The multiple factors comprehensive impact on the M.Aeruginosa's growth[J]. Environmental Monitoring Management and Technology, 2017,29(5):51-55.
[12]
Pliński M, Jozwiak T. Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdansk[J]. Oceanologia, 1999,41(1):73-80.
[13]
张毅敏,张永春,张龙江,等.湖泊水动力对蓝藻生长的影响[J]. 中国环境科学, 2007,27(5):707-711. Zhang Y M, Zhang Y C, Zhang L J, et al. The influence of lake hydrodynamics on blue algal growth[J]. China Environmental Science, 2007,27(5):707-711.
[14]
Yang Z J, Liu D F. Influence of the impounding process of the Three Corges Reservoir up to water level 172.5m on water eutrophication in the Xiangxi Bay[J]. Technological Science, 2010,53(4):1114-1125.
[15]
李林,朱伟.不同光照条件下水流对铜绿微囊藻生长的影响[J]. 湖南大学学报(自然科学版), 2012,39(9):87-92. Li L, Zhu W. Effects of water flow on the growth of Microcystis aeruginosa under different light conditions[J]. Journal of Hunan University (Natural Science Edition), 2012,39(9):87-92.
[16]
李飞鹏,高雅,张海平,等.流速对浮游藻类生长和种群变化影响的模拟试验[J]. 湖泊科学, 2015,27(1):44-49. Li F P, Gao Y, Zhang H P, et al. Simulation experiment on the effect of flow velocity on phytoplankton growth and composition[J]. Lake Science, 2015,27(1):44-49.
[17]
陈桂钦,彭琳,黄莹莹,等.暗光缺氧条件下微囊藻的存活及胞内物质释放[J]. 中国环境科学, 2018,38(4):1526-1531. Chen G Q, Peng L, Huang Y Y, et al. Analyzing DOM in black and odorous water bodies using excitation-emission matrix fluorescence with PARAFAC[J]. China Environmental Science, 2018,38(4):1526-1531.
[18]
刘春静.三峡水库低流速段水流流速对藻类垂向分布影响研究[D]. 重庆:重庆大学, 2011. Liu C J. Study on the Effects of Velocity on Vertical Distribution of Algae in Low Current Area of the Three Gorge[D]. Chongqing:Chongqing University, 2011.
[19]
许海,秦伯强,朱广伟.太湖不同湖区夏季蓝藻生长的营养盐限制研究[J]. 中国环境科学, 2012,32(12):2230-2236. Xu H, Qin B Q, Zhu G W. Nutrient limitation of cyanobacterial growth in different regions of Lake Taihu in summer[J]. China Environmental Science, 2012,32(12):2230-2236.
[20]
Cozar A, Echevarria F. Size structure of the planktonic community in microcosmswith different levels of turbulence[J]. Scientia Marina, 2005,69(2):187-197.
[21]
刘春光,金相灿,邱金泉,等.光照与磷的交互作用对两种淡水藻类生长的影响[J]. 中国环境科学, 2005,25(1):33-37. Liu C g, Jin X C, Qiu J Q, et al. Influence of interaction of light and phosphorus on growth of two species of algae in freshwaters[J]. China Environmental Science, 2005,25(1):33-37.
[22]
杨文鑫.水动力、光照及氮磷比对小球藻响应机制的影响[D]. 西安:西安建筑科技大学, 2018. Yang W X. Effects of hydrodynamics, light and nitrogen and phosphorus ratio on the response mechanism of chlorella[D]. Xi'an:Xi'an University of Architecture and Technology, 2018.
[23]
吕爱芃,马文林.两种培养基下3种藻类的生长情况比较[J]. 安徽农业科学, (33):311-313. Lu A V, Ma W L. Comparison on Growth Situations of the Three Kinds of Algae under Two Kinds of Media[J]. Anhui Agricultural Sciences, (33):311-313.
[24]
Wang H X, Qin Y C, Sun X W, et al. Effects of light intensity on the growth of Cryptomonas[J]. Environmental Geology, 2009,57(1):9-15.
[25]
殷燕,张运林,王明珠,等.光照强度对铜绿微囊藻和斜生栅藻生长及吸收特性的影响[J]. 湖泊科学, 2012,24(5):755-764. Yin Y, Zhang Y L, Wang M Z, et al. Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus[J]. Lake Science, 2012,24(5):755-764.
[26]
肖艳,甘南琴,郑凌凌,等.光强对微囊藻群体形态的影响及其生理机制研究[J]. 水生生物学报, 2014,1(38):35-40. Xiao Y, Gan N Q, Zheng L L, et al. Studies on morphological responses to light in colonial Microcystis and the underlying physiological mechanisms[J]. Chinese Journal of Hydrobiology, 2014, 1(38):35-40.
[27]
史小丽,王凤平,蒋丽娟,等.扰动对外源性磷在模拟水生态系统中迁移的影响[J]. 中国环境科学, 2002,22(6):58-62. Shi X L, Wang F P, Jiang L J, et al. Effect of disturbance on the movement of exogenous phosphorus in simulative aquatic eco-systems[J]. China Environmental Science, 2002,22(6):58-62.
[28]
周健,杨桂军,秦伯强,等.氮磷对微囊藻群体形态的影响[J]. 环境科学研究, 2014,27(11):1251-1257. Zhou J, Yang G J, Qin B Q, et al. Effects of nitrogen and phosporous on colony formation of Microcystis aeruginosa[J]. Research of Environmental Sciences, 2014,27(11):1251-1257.
[29]
赵先富,马沛明,刘国祥,等.不同磷浓度对小球藻铜绿微囊藻生长及生理的影响[J]. 环境科学与技术, 2013,36(11):1-6. Zhao X F, Ma P N, Liu G X, et al. Status of chlorella sp.and Microcystis aeruginosa in different phosphorus concentrations[J]. Environmental Science and Technology, 2013,36(11):1-6.
[30]
Rokkan Iversen K, Primicerio R, Larsen A, et al. Effects of small-scale turbulence on lower trophic levels under different nutrient conditions[J]. Journal of Plankton Research, 2010,32(2):197-208.