Refined spatiotemporal estimation model of PM2.5 based on deep learning method
GENG Bing1, SUN Yi-bo2, ZENG Qiao-lin3, SHANG Hao-lv4, LIU Xiao-yu5, SHAN Jing-jing1
1. Research Institute for Eco-civilization, Chinese Academy of Social Sciences, Beijing 100710, China; 2. Institute of Ecological Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. College of Computer and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 4. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 5. China Academy of Information and Communications Technology, Beijing 100191, China
Abstract:The concentration distribution of fine particulate matter (PM2.5) on the surface of the atmosphere has a strong temporal and spatial heterogeneity. Due to the limited spatial coverage of traditional PM2.5 monitoring sites, it is difficult to reflect the complexity of PM2.5 concentration in time and space. This paper proposed a temporal and spatial prediction model of ground PM2.5 concentration based on deep learning methods(PM2.5-DNN). Based on the AOD data from Kuihua-8satellite and the observation data from PM2.5 monitoring and meteorological station, hourly high-precision simulations of the surface PM2.5 concentration in Beijing had been carried out. The results show that the 1km resolution hourly ground PM2.5 concentration in Beijing area estimated by the PM2.5-DNN model had good consistency with the observation data from the surface monitoring station. The model estimation accuracy could reach R2=0.88, which was better than the performance of current mainstream method. The method proposed in this paper was suitable for fine-grained modelling and estimation of the temporal and spatial distribution of PM2.5 concentration at a regional scale. The end-to-end training method is used to construct the model, which provides a simple and effective method model for fine PM2.5 concentration estimation.
耿冰, 孙义博, 曾巧林, 商豪律, 刘霄宇, 单菁菁. 基于深度学习方法的PM2.5精细化时空估算模型[J]. 中国环境科学, 2021, 41(8): 3502-3510.
GENG Bing, SUN Yi-bo, ZENG Qiao-lin, SHANG Hao-lv, LIU Xiao-yu, SHAN Jing-jing. Refined spatiotemporal estimation model of PM2.5 based on deep learning method. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(8): 3502-3510.
何映月,张松林.2000~2016年中国PM2.5时空格局[J]. 中国环境科学, 2020,40(8):3284-3293. He Y Y, Zhang S L. Spatiotemporal pattern of PM2.5 from 2000 to 2016 in China[J]. China Environmental Science, 2020,40(8):3284-3293.
[2]
李名升,任晓霞,于洋,等.中国大陆城市PM2.5污染时空分布规律[J]. 中国环境科学, 2016,36(3):641-650. Li M S, Ren X X, Yu Y, et al. Spatiotemporal pattern of ground-level fine particulate matter (PM2.5) pollution in mainland China[J]. China Environmental Science, 2016,36(3):641-650.
[3]
Zhan Y, Luo Y, Deng X, et al. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm[J]. Atmospheric environment, 2017,155:129-139.
[4]
郑国威,王腾军,杨友森,等.基于遗传小波神经网络的PM2.5浓度预测模型[J]. 测绘与空间地理信息, 2018,41(9):248-250. Zheng G W, Wang T J, Yang Y S, et al. PM2.5 concentration prediction model based on genetic wavelet neural network[J]. Geomatics & Spatial Information Technology, 2018,41(9):248-250.
[5]
梁泽,王玥瑶,岳远紊,等.耦合遗传算法与RBF神经网络的PM2.5浓度预测模型[J]. 中国环境科学, 2020,40(2):523-529. Liang Z, Wang Y Y, Yue Y W, et al. A coupling model of genetic algorithm and RBF neural network for the prediction of PM2.5 concentration[J]. China Environmental Science, 2020,40(2):523-529.
[6]
康俊锋,黄烈星,张春艳,等.多机器学习模型下逐小时PM2.5预测及对比分析[J]. 中国环境科学, 2020,40(5):1895-1905. Kang J F, Huang L X, Zhang C Y, et al. Hourly PM2.5 prediction and its comparative analysis under multi-machine learning model[J]. China Environmental Science, 2020,40(5):1895-1905.
[7]
李锋,朱彬,安俊岭,等.2013年12月初长江三角洲及周边地区重霾污染的数值模拟[J]. 中国环境科学, 2015,35(7):1965-1974. Li F, Zhu B, An J L, et al. Modeling study of a severe haze episode occurred over the Yangtze River Delta and its surrounding regions during early December, 2013[J]. China Environmental Science, 2015, 35(7):1965-1974.
[8]
李燚航,翟卫欣,颜寒祺,等.基于U-net神经网络模型的PM2.5逐小时浓度值预测模型[J]. 北京大学学报(自然科学版), 2020,56(5):796-804. Li Y H, Zhai W X, Yan H Q, et al. Prediction of PM2.5 hour concentration based on U-net neural network[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020,56(5):796-804.
[9]
付宏臣,孙艳玲,王斌,等.基于AOD数据和GWR模型估算京津冀地区PM2.5浓度[J]. 中国环境科学, 2019,39(11):4530-4537. Fu H C, Sun Y L, Wang B, et al. Estimation of PM2.5 concentration in Beijing-Tianjin-Hebei region based on AOD data and GWR model[J]. China Environmental Science, 2019,39(11):4530-4537.
[10]
Wu J, Yao F, Li W, et al. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei:A spatiotemporal statistical model[J]. Remote Sensing of Environment, 2016,184:316-328.
[11]
周亮,周成虎,杨帆,等.2000~2011年中国PM2.5时空演化特征及驱动因素解析[J]. 地理学报, 2017,72(11):2079-2092. Zhou L, Zhou C H, Yang F, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011[J]. Acta Geographica Sinica, 2017,72(11):2079-2092.
[12]
陶金花,张美根,陈良富,等.一种基于卫星遥感AOT估算近地面颗粒物的方法[J]. 中国科学:地球科学, 2013,43(1):143-154. Tao J H, Zhang M G, Chen L F, et al. Method to estimate concentration of surface-level particulate matter from satellite-based aerosol optical thickness[J]. Science China:Earth Sciences, 2013,43(1):143-154.
[13]
李成才,毛节泰,刘启汉,等.MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J]. 中国科学:D辑, 2005,35(A01):177-186. Li C C, Mao J T, Liu Q H, et al. Application of MODIS remote sensing aerosol products in Beijing air pollution research[J]. Science in China Ser. D Earth Sciences, 2005,35(A01):177-186.
[14]
吴健生,王茜.基于AOD数据反演地面PM2.5浓度研究进展[J]. 环境科学与技术, 2017,40(8):68-76. Wu J S, Wang X. Research progress of retrieval ground-level PM2.5 concentration based on AOD data[J]. Environmental Science & Technology, 2017,40(8):68-76.
[15]
Xie Y, Wang Y, Zhang K, et al. Daily estimation of ground-level PM2.5 concentrations over Beijing using 3km resolution MODIS AOD[J]. Environmental Science & Technology, 2015,49(20):12280-12288.
[16]
Paciorek C J, Liu Y, Moreno-Macias H, et al. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5[J]. Environmental Science & Technology, 2008, 42(15):5800-5806.
[17]
Yang F, Wang Y, Tao J, et al. Preliminary investigation of a new AHI aerosol optical depth (AOD) retrieval algorithm and evaluation with multiple source AOD measurements in China[J]. Remote Sensing, 2018,10(5):748.
[18]
王琴,张大伟,刘保献,等.基于PMF模型的北京市PM2.5来源的时空分布特征[J]. 中国环境科学, 2015,35(10):2917-2924. Wang Q, Zhang D W, Liu BX, et al. Spatial and temporal variations of ambient PM2.5 source contributions using positive matrix factorization[J]. China Environmental Science, 2015,35(10):2917-2924.
[19]
周丽,徐祥德,丁国安,等.北京地区气溶胶PM2.5粒子浓度的相关因子及其估算模型[J]. 气象学报, 2003,61(6):761-768. Zhou L, Xu D, Ding G A, et al. The correlation factors and pollution forecast model for PM2.5 concentration in Beijing area[J]. Acta Meteorologica Sinica, 2003,61(6):761-768.
[20]
贺祥,林振山,刘会玉,等.基于灰色关联模型对江苏省PM2.5浓度影响因素的分析[J]. 地理学报, 2016,71(7):1119-1129. He X, Lin S, Liu H Y, et al. Analysis of the driving factors of PM2.5 in Jiangsu province based on grey correlation model[J]. Acta Geographica Sinica, 2016,71(7):1119-1129.
[21]
王敏,邹滨,郭宇,等.基于BP人工神经网络的城市PM2.5浓度空间预测[J]. 环境污染与防治, 2013,35(9):63-66. Wang M, Zou B, Guo Y, BP artificial neural network-based analysis of spatial variability of urban PM2.5 concentration[J]. Environment Pollution & Control, 2013,35(9):63-66.
[22]
宋国君,国潇丹,杨啸,等.沈阳市PM2.5浓度ARIMA-SVM组合预测研究[J]. 中国环境科学, 2018,38(11):4031-4039. Song G J, Guo X D, Yang X, et al. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang[J]. China Environmental Science, 2018,38(11):4031-4039.
[23]
Chu D A, Kaufman Y, Zibordi G, et al. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS)[J]. Journal of Geophysical Research:Atmospheres, 2003,108(D21).
[24]
Gupta P, Christopher S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products:2. A neural network approach[J]. Journal of Geophysical Research:Atmospheres, 2009,114(D20).
[25]
孙成,王卫,刘方田,等.基于线性混合效应模型的河北省PM2.5浓度时空变化模型研究[J]. 环境科学研究, 2019,32(9):1500-1509. Sun C, Wang W, Liu F T, et al. Spatial-temporal simulation of PM2.5 concentration in Hebei Province based on linear mixed effects model[J]. Research of Environmental Sciences, 2019,32(9):1500-1509.
[26]
Ma Z, Liu Y, Zhao Q, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model[J]. Atmospheric Environment, 2016,133:156-164.
[27]
Kloog I, Koutrakis P, Coull B A, et al. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements[J]. Atmospheric Environment, 2011,45(35):6267-6275.
[28]
李娟,尉鹏,戴学之,等.基于机器学习方法的西安市数值模拟优化研究[J]. 环境科学研究, 2021,34(4):872-881. Li J, Wei P, Dai X Z, et al. Optimization of numerical simulation in Xi'an based on machine learning methods[J]. Research of Environmental Sciences, 2021,34(4):872-881.
[29]
Liu B-C, Binaykia A, Chang P-C, et al. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR):A case study of Beijing-Tianjin-Shijiazhuang[J]. PloS one, 2017,12(7):1-17.
[30]
Hu X, Belle J H, Meng X, et al. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach[J]. Environmental Science & Technology, 2017,51(12):6936-6944.
[31]
Yu W, Liu Y, Ma Z, et al. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting[J]. Scientific reports, 2017,7(1):1-9.
[32]
Li T, Shen H, Zeng C, et al. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China:Methods and assessment[J]. Atmospheric Environment, 2017,152:477-489.
[33]
Hu X, Waller L A, Al-Hamdan M Z, et al. Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression[J]. Environmental research, 2013,121:1-10.
[34]
Bengio Y. Learning deep architectures for AI[M]. Now Publishers Inc, 2009.
[35]
郑毅,朱成璋.基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014,44(6):19-25. Zheng Y, Zhu C Z. A prediction method of atmospheric PM2.5 based on DBNs[J]. Journal of Shandong University (Engineering Science), 2014,44(6):19-25.
[36]
马井会,曹钰,余钟奇,等.深度学习方法在上海市PM2.5浓度预报中的应用[J]. 中国环境科学, 2020,40(2):530-538. Ma J H, Cao Y, Yu Z Q, et al. The application of deep learning method in Shanghai PM2.5 prediction[J]. China Environmental Science, 2020,40(2):530-538.
[37]
Ian Goodfellow, Yoshua Bengio, Aaton Courville. Deep learning[M]. The MIT Press, 2016.