Low superficial gas velocity intermittent aeration AGS (aerobic granular sludge) SBR system oftreating domestic wastewater
LI Dong1, CAO Si-yu1, WANG Qi1, ZHANG Jie1,2
1. Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; 2. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150001, China
Abstract:Three SBR reactors were used to inoculate activated sludge from sewage treatment plants in this experiment. R1was used high SGV continuous aeration, R2 was used low SGV continuous aeration, and R3 was used low SGV intermittent aeration to cultivate aerobic granular sludge in actual domestic sewage, and explore the effect of different SGV aeration conditions on the formation of aerobic granular sludge and the effect of system processing. After 120 days of incubation, the particle sizes of R1, R2 and R3 were (754±78)μm, (812±86)μm and (1183±93)μm, respectively. The denitrification and phosphorus removal effect of R3 was better than that of R1 and R2. The results show that the application of low SGV intermittent aeration strategy can realize the cultivation of aerobic granular sludge in actual domestic sewage, and the system had good denitrification and phosphorus removal performance. The proportion of denitrifying phosphorus-removing organisms (DPAO) to phosphorous accumulating organisms (PAO) was 24.75%.
Yarlagadda V N, Sarvajith M, KrishnaMohan T V. Aerobic granular sludge:The future of wastewater treatment[J]. Current Science, 2019,117(3):395-404.
[2]
Winkler MKH, Kleerebezem R, De Bruin L M N, et al. Microbial diversity differences within aerobic granular sludge and activated sludge flocs[J]. Applied Microbiology and Biotechnology, 2012,97(16):7447-7458.
[3]
Winkler MKH, LeQH, VolckeE P I. Influence of partial denitrification and mixotrophic growth of NOB on microbial distribution in aerobic granular sludge reactor[J]. Environmental Science & Technology, 2015,49(18):11003-11010.
[4]
Peyong Y N, Zhou Y, Abdullah A Z, et al. The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater[J]. Biochemical Engineering Journal, 2012,67(15):52-59.
[5]
Awang N A, Shaaban M G, Lee C W, et al. Characterization of aerobic granular sludge developed under variable and low organic loading rate[J]. Sains Malaysiana, 2017,46(12):2497-2506.
[6]
De Kreuk M K, Van Loosdrecht M C M. Formation of aerobic granules with domestic sewage[J]. Journal of Environmental Engineering, 2006,132(6):694-697.
[7]
Derlon N, Wagner J, Da Costa R H R, et al. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume[J]. Water Research, 2016,105:341-350.
[8]
De Kreuk M K, Van Loosdrecht M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science and Technology, 2004,49(11/12):9-17.
[9]
王亚宜,彭永臻,王淑莹,等.反硝化除磷理论、工艺及影响因素[J]. 中国给水排水, 2003,19(1):33-36.Wang Y Y, Peng Y Z, Wang S Y, et al. Denitrification and phosphorus removal theory, technology and influence factors[J]. China Water & Wastewater, 2003,19(1):33-36.
[10]
姜鸣,张静慧,宫飞蓬,等.生物反硝化除磷技术研究进展[J]. 净水技术, 2011,30(6):11-15.Jang M, Zhang J H, Gong F P, et al. Advances in Research of Phosphorus Removal Technology for Biological Denitrification Processes[J]. Water Purification Technology, 2011,30(6):11-15.
[11]
傅钢,何群彪,周增炎.生物反硝化除磷技术及其研究进展[J]. 上海环境科学, 2003,22(12):883-887.Fu G, He Q B, Zhou Z Y. Technique of biological denitrifying dephosphorization and its study progress[J]. Shanghai Environmental Science, 2003,22(12):883-887.
[12]
宋姬晨,王淑莹,杨雄,等.亚硝酸盐对A2O系统脱氮除磷的影响[J]. 中国环境科学, 2014,34(9):2231-2238.Song J C, Wang S Y, Yang X, et al. Effect of nitrite on nutrient removal in A2O system[J]. China Environmental Science, 2014,34(9):2231-2238.
[13]
Weng D C, Peng Y Z, Wang X X, et al. Inhibition of nitrite on denitrifying phosphate removal process[J]. Advanced Materials research, 2014,3248:1944-1950.
[14]
Zeng W, Yang Y Y, Li L, et al. Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater[J]. Bioresource technology, 2011,102(12):6657-6664.
[15]
Tay H, Liu S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001,57(1/2):227-233.
[16]
Chen Y, Jiang W, Liang D T, et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2007,76(5):1199-1208.
[17]
Lochmatter S, Holliger C. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous[J]. Water Reaserch, 2014,59:58-70.
[18]
Devlin T R, Di Biase A, Kowalski M, et al. Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics[J]. Bioresource Technology, 2017,224:229-235.
[19]
刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J]. 中国环境科学, 2008,28(4):360-364.Liu L, Ren T T, Xu D Q, et al. Cultivation and characteristics of the high strength aerobic granular sludge[J]. China Environmental Science, 2008,28(4):360-364.
[20]
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:100-124.State Environmental Protection Admistration. Monitoring and anlysis methods of Waterand wastenater[M]. 4th ed. Beijing:China Environmental Publish house, 2002:100-124.
[21]
王永飞,张捍民,王新华,等.曝气量对SBAR中好氧颗粒污泥特性的影响[J]. 环境科学, 2008,6:1598-1603.Wang Y F, Zhang H M, Wang X H, et al. Effects of aeration intensity on characteristics of aerobic granulesin sequencing batch airlift reactor (SBAR)[J]. Environmental Science, 2008,6:1598-1603.
[22]
Chudoba J, Grau P, Ottava V. Control of activated-sludge filamentous bulking-II. Selection of microorganism by means of a selector[J]. Water Research, 1973,7:1389-1406.
[23]
Zhou J H, Zhang Z M, Zhao H, et al. Optimizing granules size distribution for aerobic granular sludge stability:Effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016,216:562-570.
[24]
范文雯,袁林江.气泡直径对气-液-污泥流态及污泥颗粒化的影响[J]. 中国环境科学, 2020,40(9):3859-3870.Fan W W, Yuan L J. The effect of bubble sizes on air-liquid-sludge flow pattern and aerobic sludge granulation[J]. China Environmental Science, 2020,40(9):3859-3870.
[25]
王陆玺,周楠,王晨旭,等.流体流速对好氧颗粒污泥快速培养的影响[J]. 中国环境科学, 2018,38(6):2090-2096.Wang L X, Zhou N, Wang C X, et al. Influences of fluid flow rate on the rapid culture of aerobic granular sludge[J]. China Environmental Science, 2018,38(6):2090-2096.
[26]
吴昌永,周岳溪.厌氧/好氧运行方式对颗粒污泥形成的影响[J]. 中国环境科学, 2013,33(7):1237-1243.Wu C Y, Zhou Y X. Effect of anaerobic/aerobic alternative operating strategy onthe formation of granular sludge in a sequencing batch reactor[J]. China Environmental Science, 2013,33(7):1237-1243.
[27]
黄健盛,郭银应,刘德绍,等.两种不同运行方式下好氧颗粒污泥培养及污染物去除性能对比研究[J]. 工程科学与技术, 2021,53(2):164-170.Huang J S, Guo Y Y, Liu D S, et al. Comparative study on the aerobic granular sludge cultivation andpollutant removal under two different operation modes[J]. Advanced Engineering Sciences, 2021,53(2):164-170.
[28]
Liu Y Q, Tay J H. Characteristics and stability of aerobic granules cultivated with different starvation time[J]. Applied Microbiology and Biotechnology, 2007,75(1):205-210.
[29]
Moy B Y P, Tay J H, Ton S K, et a1. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002,34(66):407-412.
[30]
Chiu Z C, Chen M Y, Lee D J, et al. Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure[J]. Applied Microbiology and Biotechnology, 2007,75(3):685-691.
[31]
He Q L, Chen L, Zhang S J, et al. Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity:impact of aeration time[J]. Bioresource technology, 2018,263:214-222.
[32]
Tay J H, Pan S, He Y X, et al. Effect of organic loading rate on aerobic granulation.II:characteristics of aerobic granules[J]. Journal of Environmental Engineering, 2004,130(10):1102-1109.
[33]
He Q, Zhang J, Gao S, et al. A comprehensive comparison between non-bulkingand bulking aerobic granular sludgein microbial communities[J]. Bioresource Technology, 2019,294:122151.
[34]
Sutherland I W. Biofilm exopolysaccharides:a strong and sticky framework[J]. Microbiology, 2001,147:3-9.
[35]
Zhang L, Feng X, Zhu N, et al. Role of Extracellular Protein in the Formation and Stability of Aerobic Granules[J]. Enzyme and Microbial Technology, 2007,41(5):551-557.
[36]
McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2):1051-1057.
[37]
Wang Z P, Liu L L, Yao H, et al. Effect of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J]. Chemosphere, 2006,63(10):1728-1735.
[38]
张功良,李冬,张肖静,等.延时曝气对常温低氨氮SBR亚硝化影响及恢复[J]. 中国环境科学, 2014,34(8):1998-2002.Zhang G L, Li D, Zhang X J, et al. Research on the recovery strategy for nitrosation at room temperature[J]. China Environmental Science, 2014,34(8):1998-2002.
[39]
Katsogiannis A N, Kornaros M, Lyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs[J]. Water Scienceand Technology, 2003,47(11):53-59.
[40]
Bournazou M N C, Hooshiar K, Arellano-Garcia H, et al. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification[J]. Water Research, 2013,47(10):3399-3410.
[41]
GB/18918-2002城镇污水处理厂污染物排放标准[S].GB/18918-2002 Discharge standard of pollutants in municipal wastewater treatment plant[S].