Effect of SO42- on coagulation performance using different coagulants in nano-TiO2 recovery process
LIU Yu1,2, LI Hui-li1,3, XU Hui2, LI Ming-shuang2,4, XIANG Yu2,5, LYU Ping1,2, WANG Ya-bo1,2
1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. State Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 3. Kashi University, Kashi 844099, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China; 5. School of Resources Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China
Abstract:In order to reduce the practical cost of nano-TiO2, the TiO2 was isolated via solid-liquid process by applying different coagulants. By investigating the turbidity removal rate, effluent pH value, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), solid state nuclear magnetism (NMR), scanning electron microscopy (SEM), and energy spectrum analysis (EDS), the effects of SO42- on the coagulation efficiency during nano-TiO2 recycling process was studied. The results showed that the turbidity removal rate decreased by 0.80%, and the floc size decreased from 450μm to 215μm when the concentration of SO42-increased from 0.0mmol/L to 20.0mmol/L under AlCl3 (0.1mmol/L), while the strength factor of flocs did not change significantly. The low polymerization species Ala could not react with SO42-, and generated large amount of amorphous Al(OH)3 via adsorption bridging and flocculation sweeping effects during coagulation process. When Al13 was used as coagulant, the size of re-growth flocs decreased with the increasing of SO42- concentration. The occurrence of red shift for S-O peak indicated that the new S-containing polymers were produced. The movement of Al 2p peak toward higher binding energy revealed that no Al(OH)3 was generated in the flocs.
刘煜, 李慧莉, 徐慧, 李明霜, 象豫, 吕萍, 王亚博. Nano-TiO2回收过程中SO42-对不同混凝剂混凝过程的影响[J]. 中国环境科学, 2021, 41(12): 5627-5636.
LIU Yu, LI Hui-li, XU Hui, LI Ming-shuang, XIANG Yu, LYU Ping, WANG Ya-bo. Effect of SO42- on coagulation performance using different coagulants in nano-TiO2 recovery process. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(12): 5627-5636.
Li Z, Hu M, Song H, et al. Toxic effects of nano-TiO2 in bivalves-A synthesis of meta-analysis and bibliometric analysis[J]. Journal of Environmental Sciences, 2021,104:188-203.
[2]
扈莹莹,李其轩,刘昊天,等.纳米二氧化钛光催化技术抑菌机制及其在食品包装中的应用研究进展[J]. 食品科学, 2020,41(3):232-238. HU Ying-ying, LI Qi-xuan, LIU Hao-tian, et al. Bactericidal mechanism of nano-titanium dioxide photocatalysis technology and its application in food packaging: a literature review[J]. Food Science, 2020,41(3):232-238.
[3]
黄国林,梁平,刘芬.化学絮凝法对钛白废水的处理[J]. 华东地质学院学报, 1999,22(3):270-274. HUANG Guo-lin, LIANG ping, LIU fen. Treatment of Titanium Dioxide Wastewater By Chemical Coagulation[J]. Journal of East China Institute of Technology Natural Science Edition, 1999,22(3): 270-274.
[4]
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions[J]. Environmental Science & Technology, 2009,43(24):9216-9222.
[5]
Kiser M A, Westerhoff P, Benn T, et al. Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants[J]. Environmental Science & Technology, 2009,43(17):6757-6763.
[6]
Lead J R, Batley G E, Alvarez P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review[J]. Environmental Toxicology and Chemistry, 2018,37(8): 2029-2063.
[7]
赵艳侠.钛盐混凝剂的混凝行为,作用机制,絮体特性和污泥回用研究[D]. 山东大学, 2014. ZHAO Yan-xia. Invetigation of coagulation behaviour, coagulation mechanism, floc characteristics and sludge reuse with titanium based coagulants[D]. Shandong University, 2014.
[8]
龚小娟.水体中TiO2纳米颗粒的分散稳定性与常规工艺去除效果研究[D]. 哈尔滨:哈尔滨工业大学, 2013. GONG Xiao-juan. The dispersion stablity of TiO2 nanoparticles in water and removal effect by conventional process[D]. Harbin: Harbin Institute of Technology, 2013.
[9]
张欣桐.混凝去除纳米二氧化钛特性研究及混凝系统的优化[D]. 哈尔滨:哈尔滨工业大学, 2013. ZHANG Xin-tong. Research on the propertise of removing titanium dioxide nanoparticles by coagulation and optimizing the coagulation system[D]. Harbin: Harbin Institute of Technology, 2013.
[10]
Ghanbari F, Zirrahi F, Olfati D, et al. TiO2 nanoparticles removal by electrocoagulation using iron electrodes: Catalytic activity of electrochemical sludge for the degradation of emerging pollutants[J]. Journal of Molecular Liquids, 2020,310:113217.
[11]
Wang H T, Ye Y Y, Qi J, et al. Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters[J]. Water Science & Technology, 2013,68(5):1137-1143.
[12]
You Z, Zhuang C, Sun Y, et al. Efficient Removal of TiO2 Nanoparticles by Enhanced Flocculation-Coagulation[J]. Industrial & Engineering Chemistry Research, 2019,58(31):164-168.
[13]
邬艳,杨艳玲,李星,等.三种常见混凝机理为主导条件下絮体特性研究[J]. 中国环境科学, 2014,34(1):150-155. WU Yan, YANG Yanling, LI Xing, et al. Study on flocs characteristics under three common dominant coagulation mechanisms[J]. China Environmental Science, 2014,34(1):150-155.
[14]
Xu H, Xiao F, Wang D. Effects of Al2O3 and TiO2 on the coagulation process by Al2(SO4)3 (AS) and poly-aluminum chloride (PACl) in kaolin suspension[J]. Separation and Purification Technology, 2014, 124(1):9-17.
[15]
Cheng H, Yang T, Ma J, et al. The aggregation kinetics of manganese oxides nanoparticles in Al(III) electrolyte solutions: Roles of distinct Al(III) species and natural organic matters[J]. Science of the Total Environment, 2020,744:140814.
[16]
Arenas L R, Gentile S R, Zimmermann S, et al. Coagulation of TiO2, CeO2 nanoparticles, and polystyrene nanoplastics in bottled mineral and surface waters. Effect of water properties, coagulant type, and dosage[J]. Water Environment Research, 2020,92(8):1184-1194.
[17]
曲江东,徐慧,徐建坤,等.原水性质对新型含Ca2+复合混凝剂混凝过程的影响[J]. 环境科学, 2019,40(1):263-272. QU Jiang-dong, XU Hui, XU Jian-kun, et al. Influence of the Coagulation Mechanism on the Coagulation Performances Using New Composite Coagulants: Role of the Raw Water Characteristics[J]. Environmental Science, 2019,40(1):263-272.
[18]
Xue Y W, Yang K, Mei J. Study of influence factor of fluoride removal from fluorinated water using coagulating sedimentation method[J]. Engineering Journal of Wuhan University, 2010,43(4):477-480.
[19]
Parthasarathy N, Buffle J, Haerdi W. Combined use of calcium salts and polymeric aluminium hydroxide for defluoridation of waste waters, Water Research, 1986,20(4):443-448.
[20]
Duan S X, Xu H, Xiao F, et al. Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,459:14-21.
[21]
张大为,徐慧,王希,等.藻形态及混凝剂组成对混凝-超滤过程的影响[J]. 环境科学, 2017,38(8):3281-3289. ZHANG Da-wei, XU Hui, WANG Xi, et al. Effects of Algal Morphology and Al Species Distribution on the Coagulation- Ultrafiltration Process[J]. Envirmental Science, 2017,38(8):3281- 3289.
[22]
Hui X, Feng X, Wang D. Effects of Al2O3 and TiO2 on the coagulation process by Al2(SO4)3 (AS) and poly-aluminum chloride (PACl) in kaolin suspension[J]. Separation and Purification Technology, 2014,124(1):9-17.
[23]
Zhang D, Xu H, Wang X, et al. Influence of coagulation process on the ultrafiltration performance - The roles of Al species and characteristics of algae-laden water[J]. Separation & Purification Technology, 2017, 183:32-42.
[24]
Wang X, Xu H, Wang D. Mechanism of fluoride removal by AlCl3and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020,398:122987.
[25]
刘丽冰,王希,杨承刚,等.铝系混凝剂优势形态分析及其混凝特性[J]. 环境科学学报, 2020,40(12):38-51. LIU Li-bing, WANG Xi, YANG Cheng-gang, et al. The analysis of dominant species in aluminous coagulants and their coagulation properties[J]. Acta Scientiae Circumstantiae, 2020,40(12):38-51.
[26]
蒋子铎,吴璧耀.二氧化钛的表面化学改性[J]. 现代化工, 1991, 11(5):14-18. JIANG Zi-duo, WU Bi-yao. Modifaction of the Surface Properties of Titanium Dioxide[J]. Modern Chemical Industry, 1991,11(5):14-18.
[27]
Wang Dong-Sheng, Sun Wei, Xu Yi, et al. Speciation stability of inorganic polymer flocculant-PACl[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004,243(1-3):1-10.
[28]
高倩,张崇淼,徐慧,等.混凝-超滤预沉积对去除腐殖酸的影响[J]. 环境化学, 2019,38(7):1645-1655. GAO Qian, ZHANG Chong-miao, XU Hui, et al. Effects of pre- deposition on removal of humic acid in the coagulantion-ultrafiltration process[J]. Environmental Chemistry, 2019,38(7):1645-1655.
[29]
许海红,郭岱石,蒋淇忠,等.硫酸根促进的纯硅MCM-41催化假性紫罗兰酮环化合成紫罗兰酮的性能[J]. 催化学报, 2006,27(12): 1080-1086. XU Hai-hong, GUO Dai-shi, JIANG Qi-zhong, et al. Catalytic Performance of Sulfated Silica MCM-41for Cyclization of Pseudoionone to Ionones[J]. Chinese Journal of Catalysis, 2006, 27(12):1080-1086.
[30]
张鹏,王雨露,赵冬琴,等.聚磷氯化铁镁钛混凝剂的制备与表征[J]. 环境化学, 2018,37(12):2677-2687. ZHANG Peng, WANG Yu-lu, ZHAO Dong-qin, et al. Preparation and characterization of polychlorinated ferric magnesium titanium (PFMTC)[J]. Environmental chemistry, 2018,37(12):2677-2687.
[31]
MA Hui-yan, LIU Zheng-jiang, CHENG Lin, et al. Spectral Characteristics and Catalytic Performances of SO42-/Ce-TiO2 with Visible Light Response[J]. Spectroscopy and Spectral Analysis, 2016, 36(4):229-234.
[32]
Vyalikh A, Massiot D, Scheler U. Structural characterisation of aluminium layered double hydroxides by 27Al solid-state NMR[J]. Solid State Nuclear Magnetic Resonance, 2009,36(1):19-23.
[33]
Züchner L, Chan J C C, Müller-Warmuth W, et al. Short-Range Order and Site Connectivities in Sodium Aluminoborate Glasses: I. Quantification of Local Environments by High-Resolution 11B, 23Na, and 27Al Solid-State NMR[J]. The Journal of Physical Chemistry B, 1998,102(23):4495-4506.
[34]
Pardal X, Brunet F, Charpentier T, et al. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate[J]. Inorganic Chemistry, 2012,51(3):1827-1836.
[35]
Lin J L, Huang C, Chin C J M, et al. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PACl coagulation[J]. Water Research, 2009,43(17):4285-4295.
[36]
Zachary, Mensinger, Wei, et al. Oligomeric Group 13hydroxide compounds-a rare but varied class of molecules[J]. Chemical Society Reviews, 2012,43(17):1019-1030.