Remote estimation of PM2.5 based on GaoFen-4 satellite data in the Yangtze River Delta urban agglomeration
YAN Ying-ting1, LU Xiao-man1, WANG Jia-jia1, CHEN Ming-nan2, ZHOU Li-guo1,3, MA Yu-chun1
1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; 2. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; 3. Institute of Eco-Chongming, Shanghai 200062, China
Abstract:This paper used 6 SV model and dark target algorithm to retrieve AOD with a high spatial resolution based on GaoFen-4(GF-4) geostationary satellite data. Afterwards, combined with the PM2.5 concentration data of the ground air quality observation sites, meteorological factors and other data, physical correction methods and linear mixed effects(LME) model were used to monitor the large-scale and spatial continuous PM2.5 concentration in the Yangtze River Delta urban agglomeration(YRDUA). The results showed that the retrieved GF-4 AOD has good spatial resolution and spatial continuity, and the correlation coefficient(R) with AERONET ground-based monitoring data reached 0.82. The LME model based on GF-4 AOD showed a good agreement between the estimated PM2.5 concentration and the in situ observed values(R2=0.74). The 10-fold cross-validation R2 of spring, summer,autumn and winter were 0.67, 0.59, 0.64 and 0.72, respectively; and the mean absolute error(MAE) were 10.40, 7.42, 10.10 and 13.34μg/m3, respectively, which indicates that GF-4 can be used for regional PM2.5 concentration monitoring.
严莹婷, 陆小曼, 王嘉佳, 陈命男, 周立国, 马蔚纯. 基于GF-4卫星的长三角城市群PM2.5遥感反演[J]. 中国环境科学, 2022, 42(3): 1005-1012.
YAN Ying-ting, LU Xiao-man, WANG Jia-jia, CHEN Ming-nan, ZHOU Li-guo, MA Yu-chun. Remote estimation of PM2.5 based on GaoFen-4 satellite data in the Yangtze River Delta urban agglomeration. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(3): 1005-1012.
Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysical Research Letters, 2003,30(21):2095-2098.
[2]
Donkelaar A V, Martin R V, Park R J. Estimating ground-level PM2.5using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research, 2006,111(D21):1-10.
[3]
Green M, Kondragunta S, Ciren P, et al. Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and improve PM2.5 mass at Bondville, Illinois[J].Journal of the Air & Waste Management Association, 2009,59(9):1082-1091.
[4]
Hua Z Q, S W W, Yang G, et al. A full-coverage daily average PM2.5retrieval method with two-stage IVW fused MODIS C6AOD and two-stage GAM model[J]. Remote Sensing, 2019,11(13):1558-1576.
[5]
Liu Y, Franklin M, Kahn R, et al. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area:A comparison between MISR and MODIS[J]. Remote Sensing of Environment, 2007,107(1/2):33-44.
[6]
贾松林,苏林,陶金花,等.卫星遥感监测近地表细颗粒物多元回归方法研究[J].中国环境科学, 2014,34(3):565-573.Jia S L, Su L, Tao J H, et al. A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing[J]. China Environmental Science, 2014,34(3):565-573.
[7]
Hu X, Waller L A, Lyapustin A, et al. 10-year spatial and temporal trends of PM2.5concentrations in the southeastern US estimated using high-resolution satellite data[J]. Atmospheric Chemistry and Physics,2014,14(12):6301-6314.
[8]
Wei J, Li Z Q, Sun L, et al. Extending the EOS long-term PM2.5 data records since 2013 in China:Application to the VIIRS deep blue aerosol products[J]. IEEE Transactions on Geoscienc, 2021:3050999.
[9]
Ma Z W, Hu X F, Sayer A M, et al. Satellite-Based spatiotemporal trends in PM2.5 concentrations:China, 2004-2013[J]. Environmental Health Perspectives, 2016,124(2):184-192.
[10]
Zhang T H, Liu G, Zhu Z M, et al. Real-Time estimation of satellite-derived PM2.5 based on a semi-physical geographically weighted regression model[J]. Environmental Research and Public Health, 2016,13(10):974-987.
[11]
李成才,毛节泰,刘启汉,等. MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J].中国科学:地球科学, 2005,35(0z1):177-186.Li C C, Mao J T, Liu Q H, et al. Research on the air pollution in Bering and its surroundings with MODIS AOD products[J]. Science China:Earth Sciences, 2005,35(0z1):177-186.
[12]
Ma Z W, Liu Y, Zhao Q Y, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model[J]. Atmospheric Environment,2016,133:156-164.
[13]
陈辉,厉青,张玉环,等.基于地理加权模型的我国冬季PM2.5遥感估算方法研究[J].环境科学学报, 2016,36(6):2142-2151.Chen H, Li Q, Zhang Y H, et al. Estimations of PM2.5 concentrations based on the method of geographically weighted regression[J]. Acta Scientiae Circumstantiae, 2016,36(6):2142-2151.
[14]
李同文,孙越乔,杨晨雪,等.融合卫星遥感与地面测站的区域PM2.5反演[J].测绘地理信息, 2015,40(3):6-9.Li T W, Sun Y Q, Yang C X, et al. Retrieving PM2.5 using satellite remote sensing and ground station measurements[J]. Journal of Geomatics, 2015,40(3):6-9.
[15]
李志鹏,陈健.基于GOCI卫星的大气细颗粒物PM2.5的遥感反演及其时空分布规律研究[J].遥感技术与应用, 2020,35(1):163-173.Li Z P, Chen J. Remote sensing retrieval of atmospheric fine particle PM2.5 based on GOCI satellite and its temporal and spatial distribution[J]. Remote Sensing Technology and Application, 2020,35(1):163-173.
[16]
耿冰,孙义博,曾巧林,等.基于深度学习方法的PM2.5精细化时空估算模型[J].中国环境科学, 2021,41(8):3502-3510.Geng B, Sun Y B, Zeng Q L, et al. Refined spatiotemporal estimation model of PM2.5 based on deep learning method[J]. Chinese Environmental Science, 2021,41(8):3502-3510.
[17]
Lu X M, Wang J J, Yan Y T, et al. Estimating hourly PM2.5concentrations using Himawari-8AOD and a DBSCAN-modified deep learning model over the YRDUA, China[J]. Atmospheric Pollution Research, 2021,12(2):183-192.
[18]
Sun K, Chen X L, Zhu Z M, et al. High resolution aerosol optical depth retrieval using Gaofen-1WFV camera data[J]. Remote Sensing,2017,9(1):89-108.
[19]
Zhang T H, Zhu Z M, Gong W, et al. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160m Gaofen-1AOD retrievals[J]. Remote Sensing of Environment,2018,216:91-104.
[20]
Yan J W, Tao F, Zhang S Q, et al. Spatiotemporal distribution characteristics and driving forces of PM2.5 in three urban agglomerations of the Yangtze River Economic Belt[J].Environmental Research and Public Health, 2021,18(5):2222-2247.
[21]
Zhu W W, Wang M C, Zhang B B. The effects of urbanization on PM2.5 concentrations in China's Yangtze River Economic Belt:New evidence from spatial econometric analysis[J]. Journal of Cleaner Production, 2019,239:118065-118076.
[22]
Ångström A. On the atmospheric transmission of sun radiation and on dust in the air[J]. Geografiska Annaler, 1929,11:156-166.
[23]
Vermote E F, Tanré D, Deuzé J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S:An overview[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997,35(3):675-686.
[24]
周爽,王春林,孙睿,等.基于LME/BME的珠江三角洲PM2.5星地融合技术研究[J].中国环境科学, 2019,39(5):1869-1878.Zhou S, Wang C L, Sun R, et al. Fusion of satellite data and ground observed PM2.5in Pearl River Delta region with linear mixed effect and Bayesian maximum entropy method[J]. China Environmental Science,2019,39(5):1869-1878.
[25]
徐建辉,江洪.长江三角洲PM2.5质量浓度遥感估算与时空分布特征[J].环境科学, 2015,36(9):3119-3127.Xu J H, Jiang H. Estimation of PM2.5 concentration over the Yangtze Delta using remote sensing:Analysis of spatial and temporal variations[J]. Environmental Science, 2015,36(9):3119-3127.
[26]
付宏臣,孙艳玲,王斌等.基于AOD数据和GWR模型估算京津冀地区PM2.5浓度[J].中国环境科学, 2019,39(11):4530-4537.Fu H C, Sun Y L, Wang B, et al. Estimation of PM2.5 concentration in Beijing-Tianjin-Hebei region based on AOD data and GWR model[J].Environmental Science, 2019,39(11):4530-4537.